
Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 1

Syllabus:

Introduction: Introduction, History of Java.;Java Buzzwords; Java’s Byte

code, Java Development Kit (JDK); Object-oriented programming; Simple

Java Programs.

programs. Introducing Classes: Classes fundamentals; Declaring objects;

Constructors;this keyword;garbage collection;Overloading

methods;Access Control;final key word;Nested and inner classes

MODULE 1: INTRODUCTION TO JAVA AND CLASSES

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 2

History of Java:

Java is a general-purpose object oriented programming language developed by sun

Microsystems of USA in the year 1991. The original name of Java is Oak. Java was designed for the

development of the software for consumer electronic devices like TVs, VCRs, etc.

Introduction: Java is a general purpose programming language. We can develop two

types of Java application. They are:

(1). Stand alone Java application.

(2). Web applets.

Stand alone Java application: Stand alone Java application are programs written in

Java to carry out certain tasks on a certain stand alone system. Executing a stand-alone

Java program contains two phases:

(a) Compiling source coded into bytecode using javac compiler.

(b) Executing the bytecodede program using Java interpreter.

Java applet: Applets are small Java program developed for Internet application. An

applet located on a distant computer can be downloaded via Internet and execute on local

computer.

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 3

Java Features/Buzz words:

1. Simple

Learning java will be much easier if we already understand the basic concept of object

oriented program, then moving to java will need less effort.

Java is simple because of the following factors:

• Java is free from pointer due to this execution time of application is improve.

[whenever we write a Java program without pointers then internally it is converted into

the equivalent pointer program].

• Java have Rich set of API (application protocol interface).

• Java have Garbage Collector which is always used to collect un-Referenced (unused)

Memory location for improving performance of a Java program.

• Java contains user friendly syntax for developing Java applications.

2. Object Oriented:

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 4

Java was not designed to be source code compatible with any other language . One outcome of

this was a clean, usable, pragmatic approach to objects. Objects model in simple/easy to

extend.

3. Robust:

• To gain reliability, javas restrict you in few key areas, to force you to find your

mistakes early in program development. It also frees you from having to worry about

the most common causes of programming errors.

• Java is a strictly typed language, it checks user code at compile time and run time.

The main reasons for failure are,

1. Memory management mistakes

2. Mishandled exceptional conditions

• Java virtually eliminates these problem by managing memory allocation and deallocation.

Exceptions are handled by providing object oriented exception handling .

4.Portability:

• Many types of computer and OS are in use throughout the world and many are

connected to internet. For programs , to be dynamically downloaded , some means of

generating portable executable code is needed.

• If any language supports platform independent and architectural neutral feature known

as portable. The languages like C, CPP, Pascal are treated as non-portable language.

JAVA is a portable language.

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 5

5.Security:

Java provides a firewall between a networked applet and your computer. When you use a java

compatible web browser, you can safely download java applets without fear of viral infection.

Java is more secured language compare to other language; All java code is covered into byte

code after compilation which is not readable by human.

6.Multithread:

• It allows you to write an elegant yet sophisticated solution for multiprocess

synchronization that enables you to construct smoothly running interactive systems.

• A flow of control is known as thread. When any Language execute multiple thread at a

time that language is known as multithreaded Language. java and .net are multithreaded

Language.

7.Architectural Neutral:

• The goal of java designers to develop “write once, run anywhere, anytime, forever” so

that a program can be independent of the architecture of the system in which it is

running.

• A Language or Technology is said to be Architectural neutral which can run on any

available processors in the real world without considering there architecture and

vendor (providers) irrespect to its development and compilation

8.High Performance:

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 6

It enables the creation of cross-platform programs by compiling into an intermediate

representation called java bytecode .It can be interpreted on any system that provide JVM.

Java have high performance because of following reasons;

• Java uses Bytecode which is more faster than ordinary pointer code so Performance of

java is high.

• Garbage collector, collect the unused memory space and improve the performance of

java application.

• Java have no pointers so that using java program we can develop an application very

easily.

• It support multithreading, because of this time consuming process can be reduced to

execute the program.

9.Distributed:

• Java is designed for distributed environment of internet ,since it handles TCP/IP

protocol .The original version of java included features for intra address-space

messaging. This allowed objects on two different computers to execute procedures

remotely.

• We can create distributed applications in java. RMI and EJB are used for creating

distributed applications. In distributed application multiple client system are depends

on multiple server systems so that even problem occurred in one server will never be

reflected on any client system.

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 7

10.Dynamic:

• Java programs carry with them substantial amount of run time type information that is

used to verify and resolve accesses to objects at run time thus making it possible to

dynamically link code in a safe and expedient manner

• Java programming support Dynamic memory allocation due to this memory wastage is

reduce and improve performance of application. The process of allocating the memory

space to the input of the program at a run-time is known as dynamic memory allocation,

In java programming to allocate memory space by dynamically we use an operator called

'new' 'new' operator is known as dynamic memory allocation operator.

Java Environment variable/JAVA runtime Environment(JRE):

Java environment is a collection of tools and class, methods. The developments tools

are part of system called as java development kit(JDK) and classes ,methods are part

of the java standard library(JSL) also known as the Application programming

interface(API).

1) Java Development kit (JDK).

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 8

2) Application programming interface (API)/Java Standard library(JSL)

Java Development kits(java software:jdk1.6): Java development kit comes with a

number of Java development tools. They are:

(1) Appletviewer: Enables to run Java applet.
(2) javac: Java compiler.

(3) java : Java interpreter.

(4) javah : Produces header files for use with native methods.
(5) javap : Java disassembler.
(6) javadoc : Creates HTML documents for Java source code file.

(7) jdb : Java debugger which helps us to find the error.

A source program written in java is compiled using “javac” (java compiler) and executed using

“java” (java interpreter). The “jdb” (java debugger) is used to locate errors if any in the

source file.

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 9

Fig:Process of building and running java application

Application programming interface(API):

API is a collection of classes and methods are grouped into several different packages.

• Language Support package: Is a collection of classes and methods required for

implementing basic features of java. EX: import java.lang.*;

• Utilities package: Is a collection of classes to provide utility function such as data,time

function Ex: import java.util.*;

• Input/output package: Is a collection of classes required for input and output

manipulation EX: import java.io.*;

• Networking package: Is a collection of classes for communicating with other computer

via internet. Ex: import java.net.*;

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 10

• AWT package: The abstract window tool kit package contains classes that implements

platform independent graphical user interface. EX: import.java.awt.*;

• Applet package: This include a set of classes that allows us to create java applets. Ex:

import java.applets.*;

JAVA IS INTERPRETED:

Java as a language initially gained popularity mainly due to its platform independent

architecture or portability feature. The reason for java to be portable is that it is

interpreted.

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 11

 javac filename.java

 java filename

Just in time is added in jvm which makes the program execution much faster.

Java source code

(.java)

Native Code

JIT compiler
Java

interpreter

Bytecode file (.class file)

Java compiler

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 12

JVM(Java Virtual Machine)

The concept of Write-once-run-anywhere (known as the Platform

independent) is one of the important key feature of java language that makes java

as the most powerful language. Not even a single language is idle to this feature

but java is closer to this feature. The programs written on one platform can run on

any platform provided the platform must have the JVM(Java Virtual Machine). A

Java virtual machine (JVM) is a virtual machine that can execute Java bytecode. It

is the code execution component of the Java software platform.

Basic concepts of object oriented programming

Object:

This is the basic unit of object oriented programming. That is both data and

method that operate on data are bundled as a unit called as object. It is a real

world entity (Ex:a person, book, tables, chairs etc…)

Class:

Class is a collection of objects or class is a collection of instance variables and

methods. When you define a class, you define a blueprint for an object. This

doesn't actually define any data, but it does define what the class name means,

http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/Java_bytecode
http://en.wikipedia.org/wiki/Java_%28software_platform%29

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 13

that is, what an object of the class will consist of and what operations can be

performed on such an object.

Abstraction:

Data abstraction refers to, providing only essential information to the outside

word and hiding their background details ie. to represent the needed information in

program without presenting the details.

For example, a database system hides certain details of how data is stored and

created and maintained. Similar way, C++ classes provides different methods to the

outside world without giving internal detail about those methods and data.

EncapSUlation:

Encapsulation is placing the data and the methods/fUNCTions that work on that

data in the same place. While working with procedural languages, it is not

always clear which functions work on which variables but object-oriented

programming provides you framework to place the data and the relevant

functions together in the same object.

Inheritance:

One of the most useful aspects of object-oriented programming is code

reusability. As the name suggests Inheritance is the process of forming a new

class from an existing class that is from the existing class called as base class, new

class is formed called as derived class.

This is a very important concept of object oriented programming since this feature

helps to reduce the code size.

Polymorphism:

The ability to use a method/function in different ways in other words giving different

meaning for method/ functions is called polymorphism. Poly refers many. That is a single

method/function functioning in many ways different upon the usage is called polymorphism.

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 14

Simple java Program

Java Building and running Process:

1. Open the notepad and type the below program

Simple Java program:

Example:

class Sampleone
{

public static void main(String args[])
{

System.out.println(“Welcome to JAVA”);
}

}

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 15

Description:
(1) Class declaration: “class sampleone” declares a class, which is an object-

oriented construct. Sampleone is a Java identifier that specifies the

name of the class to be defined.

(2) Opening braces: Every class definition of Java starts with opening

braces and ends with matching one.

(3) The main line: the line “ public static void main(String args[]) “ defines a

method name main. Java application program must include this main. This

is the starting point of the interpreter from where it starts executing. A

Java program can have any number of classes but only one class will have

the main method.

(4) Public: This key word is an access specifier that declares the main

method as unprotected and therefore making it accessible to the all

other classes.

(5) Static: Static keyword defines the method as one that belongs to the

entire class and not for a particular object of the class. The main must

always be declared as static.

(6) Void: the type modifier void specifies that the method main does not

return any value.

(7) The println: It is a method of the object out of system class. It is

similar to the printf or cout of c or c++.

2. Save the above program with .java extension, here file name and class name should

be same, ex: Sampleone.java,

3. Open the command prompt and Compile the above program

javac Sampleone.java

From the above compilation the java compiler produces a bytecode(.class file)

4. Finally run the program through the interpreter

java Sapleone.java

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 16

Output of the program:

Welcome to JAVA

Implementing a Java program: Java program implementation contains three

stages. They are:

1. Create the source code.
2. Compile the source code.
3. Execute the program.

(1) Create the source code:

1. Any editor can be used to create the Java source code.

2. After coding the Java program must be saved in a file having the same name of

the class containing main() method.

3. Java code file must have .Java extension.

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 17

(2) Compile the source code:

1. Compilation of source code will generate the bytecode.

2. JDK must be installed before completion.

3. Java program can be compiled by typing javac <filename>.java

4. It will create a file called <filename>.class containing the bytecode.

(3) Executing the program:

1. Java program once compiled can be run at any system.

2. Java program can be execute by typing Java <filename>

Java Program structure: Java program structure contains six stages.

They are:

(1) DocUMentation section: The documentation section contains a set of comment

lines describing about the program.

(2) Package statement: The first statement allowed in a Java file is a package

statement. This statement declares a package name and informs the compiler that the

class defined here belong to the package.

Package student;

(3) Import statements: Import statements instruct the compiler to load the

specific class belongs to the mentioned package.

Import student.test;

(4) Interface statements: An interface is like a class but includes a group of

method deceleration. This is an optional statement.

(5) Class definition: A Java program may contain multiple class definition The class

are used to map the real world object.

(6) Main method class: The main method creates objects of various classes and

establish communication between them. On reaching to the end of main the program

terminates and the control goes back to operating system.

Java command line arguments: Command line arguments are the parameters

that are supplied to the application program at the time when they are invoked.

The main() method of Java program will take the command line arguments as the

parameter of the args[] variable which is a string array.

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 18

Example

:

Class Comlinetest
{

public static void main(String args[])
{

int count, n =

0; string str;
count = args.length;

System.out.println (“ Number of arguments :” +

count); While (n < count)
{

str = args[n

]; n = n + 1;
System.out.println(n + “ : “ + str);

}

}

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 19

Java API

Run/Calling the program:
javac Comlinetest.java

java Comlinetest Java c cpp

fortran Output:
1 : Java
2 : c

3 : cpp

4 : fortran

Java standard library includes hundreds of classes and methods grouped

into several functional packages. Most commonly used packages are:
(a) Language support Package.
(b) Utilities packages.

(c) Input/output packages

(d) Networking packages
(e) AWT packages.
(f) Applet packages.

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 20

INTRODUCING CLASSES:

Definition

A class is a template for an object, and defines the data fields and

methods of the object. The class methods provide access to manipulate the

data fields. The “data fields” of an object are often called “instance

variables.”

Example Program:

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 21

Program to calculate Area of Rectangle

class Rectangle

{

int length;

int width;

void getdata(int x,int y)

{

length=x;

width=y;

}

int rectArea()

//Data Member or instance Variables

//Method

//Method

{

RETURN(LENgth*width);

}

}

class RectangleArea

{

pUBLic static void main(String args[])

{

Rectangle rect1=new Rectangle(); //object creation rect1.getdata(10,20);

//calling methods USing object with dot(.)

int area1=rect1.rectArea(); System.oUT.Println("Area1="+area1);

}

}

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 22

Rectangle rect1=new Rectangle() Rectangle

rect2=new Rectangle()

 After defining a class, it can be used to create objects by

instantiating the class. Each object occupies some memory to hold its

instance variables (i.e. its state).

 After an object is created, it can be used to get the desired

functionality together with its class.

Creating instance of a class/Declaring objects:

 The above two statements declares an object rect1 and rect2 is of type

Rectangle class using new operator , this operator dynamically allocates

memory for an object and returns a refernce to it.in java all class objects

must be dynamically allocated.

We can also declare the object like this:

Rectangle rect1; // declare reference to object.

rect1=new Rectangle() // allocate memory in the Rectangle object.

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 23

The Constructors:

 A constructor initializes an object when it is created. It has the same

name as its class and is syntactically similar to a method. However,

constructors have no explicit return type.

 Typically, you will use a constructor to give initial values to the

instance variables defined by the class, or to perform any other

startup procedures required to create a fully formed object.

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 24

// A simple constructor.

class MyClass

{

int x;

// Following is the constructor

MyClass()

{

x = 10;

}

}

 All classes have constructors, whether you define one or not, because

Java automatically provides a default constructor that initializes all

member variables to zero. However, once you define your own

constructor, the default constructor is no longer used.

Example:

Here is a simple example that uses a constructor:

You would call constructor to initialize objects as follows:

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 25

class ConsDemo

{

public static void main(String args[])

{

MyClass t1 = new MyClass();

MyClass t2 = new MyClass();

System.out.println(t1.x + " " + t2.x);

}

}

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 26

// A simple constructor.

class MyClass

{

int x;

// Following is the Parameterized constructor

MyClass(int i)

{

x = 10;

}

}

Parameterized Constructor:

✓ Most often you will need a constructor that accepts one or

more parameters. Parameters are added to a constructor in the

same way that they are added to a method: just declare them

inside the parentheses after the constructor's name.

Example:

Here is a simple example that uses a constructor:

You would call constructor to initialize objects as follows:

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 27

class ConsDemo

{

public static void main(String args[])

{

MyClass t1 = new MyClass(10);

MyClass t2 = new MyClass(20);

System.out.println(t1.x + " " + t2.x);

}

}

10 20

This would produce following result:

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 28

this keyword

 this keyword can be used to refer current class instance variable.

 If there is ambiguity between the instance variable and parameter,

this keyword resolves the problem of ambiguity.

Understanding the problem withoUT this keyword

Let's understand the problem if we don't use this keyword by the example

given below:

class student

{

int id;

String

name;

student(int id,String name)
{

id = id;

name = name;
}

void display()
{

System.out.println(id+" "+name);
}

}

Class MyPgm

{

public static void main(String args[])
{

student s1 = new

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 29

student(111,"Anoop"); student s2 =

new student(321,"Arayan");

s1.display();
s2.display();

}

}

Output: 0 null

0 null

In the above example, parameter (formal arguments) and instance variables

are same that is why we are using this keyword to distinguish between local

variable and instance variable

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 30

SolUTIOn of the above problem by this keyword

//example of this keyword
class Student
{

int id;

String

name;

student(int id,String name)

{

this.id = id;

this.name = name;

}

void display()
{

System.out.println(id+" "+name);
}

}

Class MyPgm

{

public static void main(String args[])
{

Student s1 = new

Student(111,"Anoop"); Student s2 =

new Student(222,"Aryan");

s1.display();

s2.display();
}

}

Output111 Anoop

222 Aryan

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 31

Garbage Collection

In Java destruction of object from memory is done automatically by the

JVM. When there is no reference to an object, then that object is assumed

to be no longer needed and the memories occupied by the object are

released. This technique is called Garbage Collection. This is accomplished

by the JVM.

Can the Garbage Collection be forced explicitly?

No, the Garbage Collection cannot be forced explicitly. We may request JVM

for garbage collection by calling System.gc() method. But this does not

guarantee that JVM will perform the garbage collection.

Advantages of Garbage Collection

1. Programmer doesn't need to worry about dereferencing an object.

2. It is done automatically by JVM.

3. Increases memory efficiency and decreases the chances for memory

leak.

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 32

gc() Method

gc() method is used to call garbage collector explicitly. However gc() method

does not guarantee that JVM will perform the garbage collection. It only

requests the JVM for garbage collection. This method is present in System

and Runtime class.

Example for gc() method

public class Test

{

public static void main(String[] args)
{

Test t = new

Test(); t=null;
System.gc();

}

public void finalize()
{

System.out.println("Garbage Collected");

}

}

Output :

Garbage Collected

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 33

Overloading Methods
When two or more methods in the same class have the same name

but different parameters, it's called Overloading.

//Demonstrate method overloading

Class Overload Demo{

 void test() {

 System.out.println(“No parameters”);

 }

//overload test for one integer parameter

Void test(int a) {

 System.out.println(“a: “ +a);

}

Constructor Overloading:

Constructor overloading is a technique in Java in which a class can have any

number of constructors that differ in parameter lists. The compiler

differentiates these constructors by taking the number of parameters, and their

type.

Example:

class A

{

int a=10,b=20;

A(int a,int b)

{

System.out.println("Value of a: "+a);

System.out.println("Value of b: "+b);

}

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 34

A(int a,int b,int c)

{

System.out.println("Value of a: "+a);

System.out.println("Value of b: "+b);

System.out.println("Value of b: "+c);

}

public static void main(String ar[])

{

A a1=new A(2,3);

A a2=new A(2,3,4);

}

}

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 35

Access Control:

Which parts of a program can access the members of a class.

Access specifies are

1.Public:A public member is accessible from anywhere outside the class but within

a program

2.Private: A private members cannot be accessed (or viewed) from outside the

class.

3. Protected –A protected members cannot be accessed from outside the class,

however, they can be accessed in inherited classes

Example:

Class Test

{

 int a;

 public int b;

 private int c;

//methods to access c

Void setc(int i)

{

 c=i;

}

Int getc()

{

 return c;

}

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 36

}

Class AccessTest{

Public static void main(String args[]){

 Test ob=new Test();

 ob.a=10;

 ob.b=20;

 ob.c=100//Error

 ob.setc(100);

 System.out.println(“a,b and c:” ob+a +” “+ob.b.+ “ “ +ob.getc());

}

}

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 37

Final Keyword

In java language final keyword can be used in following way.

• Final at variable level

• Final at method level

• Final at class level

1. Final at variable level

Final keyword is used to make a variable as a constant. This is similar to const in

other language. A variable declared with the final keyword cannot be modified by

the program after initialization.

Example:

class A

{

final int a=10;

public static void main(String ar[])

{

System.out.println(“static variable a=”+a1.a); // no error

System.out.println(“static variable a=”+a1.a++); //final variable cannot be

modified (error)

}

}

2. Final at method level

• It makes a method final, meaning that sub classes cannot override this

method. The compiler checks and gives an error if you try to override the

method.

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 38

• When we want to restrict overriding, then make a method as a final.

• Example:

class A

{

final void add()

{

System.out.println(“sum=”+(2+3));

}

}

class B extends A

{

void add() // error because final method cannot override

{

System.out.println(“sum=”+(2+3));

}

public static void main(String ar[])

{ A a1=new A();

a1.add();

}

}

3. Final at class level

It makes a class final, meaning that the class cannot be inheriting by other

classes. When we want to restrict inheritance then make class as a final.

Example:

final class A

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 39

{

void add()

{

System.out.println(“sum=”+(2+3));

}

}

class B extends A // error because final class cannot inherited.

{

public static void main(String ar[])

{

A a1=new A();

a1.add();

}

}

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 40

Inner class/Nested class

 It has access to all variables and methods of Outer class and may

refer to them directly. But the reverse is not true, that is, Outer

class cannot directly access members of Inner class.

 One more important thing to notice about an Inner class is that it can

be created only within the scope of Outer class. Java compiler

generates an error if any code outside Outer class attempts to

instantiate Inner class.

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 41

Example of Inner class

class Outer

{

public void display()
{

Inner in=new Inner();

in.show();
}

class Inner
{

public void show()
{

System.out.println("Inside inner");
}

}

}

class Test

{

public static void main(String[] args)
{

}

}

Output:

Inside
inner

Outer ot=new

Outer(); ot.display();

Programming in Java(18EC663)-Module 1

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 42

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 1

Syllabus:

Inheritance: Inheritance Basics, Using Super, Creating a multilevel

heiararchy,When Constructors are called, Method overriding, Dynamic method

dispatch, Using Abstract class, Using final with inheritance, The object class

Packages and Interfaces: Packages, Access Protection,Importing

packages,Interfaces

MODULE 2: INHERITANCE,PACKAGES AND INTERFACES

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 2

Inheritance:

✓ As the name suggests, inheritance means to take something that is

already made. It is one of the most important features of Object

Oriented Programming. It is the concept that is used for reusability

purpose.

✓ Inheritance is the mechanism through which we can derive classes

from other classes.

✓ The derived class is called as child class or the subclass or we can say

the extended class and the class from which we are deriving the

subclass is called the base class or the parent class.

✓ To derive a class in java the keyword extends is used. The following

kinds of inheritance are there in java.

Types of Inheritance

Based on number of ways inheriting the feature of base class into derived class

we have five Inheritance type they are:

• Single inheritance

• Multiple inheritance(Interface)

• Hierarchical inheritance

• Multilevel inheritance

• Hybrid inheritance

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 3

1. Single inheritance

In single inheritance there exists single base class and single derived class.

Property of base class inherited into sub class and sub class having its own

property.

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 4

Example:

class A

{

void display()

{

System.out.println(“base class method”);

}

}

class B extends A

{

void display2()

{

System.out.println(“sub class methods”);

}

Public static void main(String ar[])

{

B a1=new B();

a1.display();

a1.display2();

}}

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 5

2.Multilevel inheritances

• In Multilevel inheritances there exists single base class, single derived

class and multiple intermediate base classes.

• An intermediate base class is one in one context with access derived class

and in another context same class access base class.

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 6

class A

{

void display()

{

System.out.println(“A class method”);

}

}

class B extends A

{

void display1()

{

System.out.println(“B class methods”);

}

class C extends B

{

void display2()

{

System.out.println(“C class methods”);

}

public static void main(String ar[])

{

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 7

C a1=new C();

a1.display();

a1.display1();

a1.display2();

}

}

3.Multiple inheritance

In multiple inheritance there exist multiple classes and singel derived class.

The concept of multiple inheritance is not supported in java through concept of

classes but it can be supported through the concept of interface

4.Hybrid inheritance

In the combination if one of the combination is multiple inheritance then the

inherited combination is not supported by java through the classes concept but it

can be supported through the concept of interface.

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 8

Creating Multilevel Inheritance

 When a subclass is derived from a derived class then this mechanism is

known as the multilevel inheritance.

 The derived class is called the subclass or child class for it's parent

class and this parent class works as the child class for it's just above

(parent) class.

 Multilevel inheritance can go up to any number of level.

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 9

class A

{

int x;

int y;

int get(int p, int q)

{

x=p;

y=q;

return(0);

}

void Show()

{

System.out.println(x);

}

}

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 10

super keyword

 The super is java keyword. As the name suggest super is used to access the

members of the super class. It is used for two purposes in java.

 The first use of keyword super is to access the hidden data variables of the

super class hidden by the sub class.

Example: Suppose class A is the super class that has two instance variables

as int a and float b. class B is the subclass that also contains its own data members

named a and b. then we can access the super class (class A) variables a and b inside

the subclass class B just by calling the following command.

class B extends A

{

void Showb()

{

System.out.println("B");

}

}

class C extends B

{

void display()

{

System.out.println("C");

}

public static void main(String args[])

{

A a = new A();

a.get(5,6);

a.Show();

}

}

OUTPUT

5

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 11

super.member;

 Here member can either be an instance variable or a method. This form of

super most useful to handle situations where the local members of a

subclass hides the members of a super class having the same name. The

following example clarifies all the confusions.

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 12

class A

{

int a;

float b;

void Show()

{

System.out.println("b in super class: " + b);

}

}

class B extends A

{

int a;

float b;

B(int p, float q)

{

a = p;

super.b = q;

}

void Show()

{

super.Show();

System.out.println("b in super class: " + super.b);

System.out.println("a in sub class: " + a);

}

}

class Mypgm

{

public static void main(String[] args)

{

B subobj = new B(1, 5);

subobj.Show();

}

}

OUTPUT

b in super class: 5.0

b in super class: 5.0

a in sub class: 1

Example:

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 13

class A

{

int a;

int b;

int c;

A(int p, int q, int r)

{

a=p;

b=q;

c=r;

}

}

class B extends A

{

int d;

B(int l, int m, int n, int o)

{

super(l,m,n);

d=o;

}

void Show()

Use of super to call super class constructor: The second use of the keyword

super in java is to call super class constructor in the subclass. This functionality can

be achieved just by using the following command.

super(param-list);

 Here parameter list is the list of the parameter requires by the constructor

in the super class. super must be the first statement executed inside a

super class constructor. If we want to call the default constructor then we

pass the empty parameter list. The following program illustrates the use of

the super keyword to call a super class constructor.

Example:

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 14

When constructors are called

 Constructors are called in order of derivation ,from super class to subclass ,

 Super() must be the first statement executed in a subclass constructor.

 If super() is not used ,then the default constructor of each super class will be

executed.

{

System.out.println("a = " + a);

System.out.println("b = " + b);

System.out.println("c = " + c);

System.out.println("d = " + d);

}

}

class Mypgm

{

public static void main(String args[])

{

B b = new B(4,3,8,7);

b.Show();

}

}

OUTPUT

a = 4

b = 3

c = 8

d = 7

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 15

EXAMPLE

 Class A{

A()

{

System.out.println(“Inside A’s constructor”);

}

class B extends A{

B(){

System.out.println(“Inside B’s constructor”);

 }

}

Class C extends B{

C() {

System.out,println(“Inside C’s constructor”);

 }

}

Class CallingCons{

Public static void mai(String args[])

{

 C c=new C();

}

}

Output:

Inside A’s constructor

Inside B’s constructor

Inside C’s constructor

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 16

Method Overriding

 Method overriding in java means a subclass method overriding a super class

method.

 Superclass method should be non-static. Subclass uses extends keyword to

extend the super class. In the example class B is the sub class and class A

is the super class. In overriding methods of both subclass and superclass

possess same signatures. Overriding is used in modifying the methods of

the super class. In overriding return types and constructor parameters of

methods should match.

Below example illustrates method overriding in java.

Example:

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 17

class A

{

int i;

A(int a, int b)

{

i = a+b;

}

void add()

{

System.out.println("Sum of a and b is: " + i);

}

}

class B extends A

{

int j;

B(int a, int b, int c)

{

super(a, b);

j = a+b+c;

}

void add()

{

super.add();

System.out.println("Sum of a, b and c is: " + j);

}

}

class MethodOverriding

{

public static void main(String args[])

{

B b = new B(10, 20, 30);

b.add();

}

}

OUTPUT

Sum of a and b is: 30

Sum of a, b and c is: 60

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 18

class MethodOverloading

{

int add(int a,int b)

{

return(a+b);

}

float add(float a,float b)

{

return(a+b);

}

double add(int a, double b,double c)

{

return(a+b+c);

}

}

class MainClass

{

public static void main(String arr[])

{

MethodOverloading mobj = new MethodOverloading ();

System.out.println(mobj.add(50,60));

System.out.println(mobj.add(3.5f,2.5f));

System.out.println(mobj.add(10,30.5,10.5));

}

}

OUTPUT

110

6.0

51.0

Method Overloading

 Two or more methods have the same names but different argument lists.

The arguments may differ in type or number, or both. However, the return

types of overloaded methods can be the same or different is called method

overloading. An example of the method overloading is given below:

Example:

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 19

Dynamic method dispatch

 Dynamic method dispatch is the mechanism by which a call to an overridde

method at run time rather than compile time.

 It is important because this is how java implements run –time polymorphism

 A super class reference variable can refer to a subclass object.Java uses

this fact to resolve calls to overridden methods at run time.

 When an overridden method to execute based upon the type of the object

being referred to at the time the call occurs.

 If a super class contains a method that is overridden by a subclass ,then

when different types of object are referred to through a superclass

reference variable ,different version of the method are executed.

 Here is an example thet illustrates dynamic method dispatch

Class A

{

Void callme() {

System.out.printnl(“Inside A’s callme method”);

}

}

Class B extends A{

//override callme()

Void callme() {

System.out.printl(“Inside B’s callme method”);

}

}

Class C extends A {

//override callme()

Void callme() {

System.out.println(“Inside C’s callme method”);

}

}

Class Dispatch {

Public static void main(String args[]) {

A a =new A();

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 20

B b=new B();

C c=new C();

A r;

r=a; //r refers to an A object

 r.callme(); //calls A’s version of callme

 r=b; //r refers to an B object

 r.callme(); //calls B’s version of callme

 r=c; //r refers to an C object

 r.callme(); //calls C’s version of callme

OUTPUT:

Inside A’s callme method

Inside B’s callme method

Inside C’s callme method

Abstract Class

 abstract keyword is used to make a class abstract.

 Abstract class can’t be instantiated with new operator.

 We can use abstract keyword to create an abstract method; an abstract

method doesn’t have body.

 If classes have abstract methods, then the class also needs to be made

abstract using abstract keyword, else it will not compile.

 Abstract classes are used to provide common method implementation to all

the subclasses or to provide default implementation.

Example Program:

abstract Class AreaPgm

{
double dim1,dim2;

AreaPgm(double x,double y)

{

dim1=x;

dim2=y;

}

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 21

abstract double area();

}

class rectangle extends AreaPgm

{

rectangle(double a,double b)

{

super(a,b);

}

double area()

{

System.out.println("Rectangle Area");

return dim1*dim2;

}

}

class triangle extends figure

{

triangle(double x,double y)

{

super(x,y);

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 22

}

double area()

{

System.out.println("Traingle Area");

return dim1*dim2/2;

}

}

class MyPgm

{

public static void main(String args[])

{

AreaPgm a=new AreaPgm(10,10); // error, AreaPgm is a abstract class.

rectangle r=new rectangle(10,5);

System.out.println("Area="+r.area());

triangle t=new triangle(10,8);

AreaPgm ar;

ar=obj;

System.out.println("Area="+ar.area());

}

}

final Keyword In Java

The final keyword in java is used to restrict the user. The final keyword can be

used in many context. Final can be:

1. variable

2. method

3. class

1) final variable: If you make any variable as final, you cannot change the value of

final variable(It will be constant).

Example:There is a final variable speedlimit, we are going to change the value of

this variable, but It can't be changed because final variable once assigned a value

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 23

can never be changed.

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 24

class Bike

{

final int speedlimit=90;//final variable

void run()

{

speedlimit=400;

}

}

Class MyPgm

{

public static void main(String args[])

{

Bike obj=new Bike();

obj.run();

}

}

Output:Compile Time Error

2) final method: If you make any method as final, you cannot override it.

Example:

class Bike

{

final void run()

{

System.out.println("running");

}

}

class Honda extends Bike

{

void run()

{

System.out.println("running safely with 100kmph");

}

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 25

}

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 26

Class MyPgm

{

public static void main(String args[])

{

Honda honda= new Honda();

honda.run();

}

}

Output:Compile Time Error

3) final class:If you make any class as final, you cannot extend it.

Example:

final class Bike

{

}

class Honda extends Bike

{

void run()

{

System.out.println("running safely with 50kmph");

}

}

Class MyPgm

{

public static void main(String args[])

{

Honda honda= new Honda();

honda.run();

}

}

Output:Compile Time Error

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 27

The object class

 There is one special class ,Object definedvy Java.All other classes

are subclasses of Object.

 That is,Object is a superclass of all other classes.This means that a

reference variable of type Object can refer to an object of any

other class.

 Also ,since arrays are implemented as classes,a variable of type

Object can also refer to any array.

 Object defines the following methods,which means thet they are

available in every object.

Method Purpose
Object clone()

Creates a new object that is the same as

the object being cloned.

Boolean equals(Object object)

Determines whether one object is equal to

another.

Void finalize()

Called before an unused object is recycled.

Class getClass()

Obtains the class of an object at ru time.

Int hashCode()

Returns the hash code associated with the

invoking object.

Void notify()

Resumes execution of a thread waiting on

the invoking object

Void notifyAll()

Resumes execution of all threads waiting on

the invoking object

String toString()

Returns a string that describes the object

Void wait()

Void wait(long milliseconds)

Void wait(long milliseconds,

 int nanoseconds)

Waits on another thread of executio

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 28

Packages and Interfaces in JAVA

✓ A java package is a group of similar types of classes, interfaces and

sub- packages.
✓ Package in java can be categorized in two form,

o built-in package and
o user-defined package.

There are many built-in packages such as java, lang, awt, javax, swing, net,

io, util, sql etc.

Advantage of Java Package

1) Java package is used to categorize the classes and interfaces so that they

can be easily maintained.

2) Java package provides access protection.

3) Java package removes naming collision.

The package keyword is used to create a package in java.

//save as

Simple.java

package mypack;

public class Simple
{

public static void main(String args[])
{

System.out.println("Welcome to package");

}

}

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 29

How to access package from another package?

There are three ways to access the package from outside the package.

1. import package.*;
2. import package.classname;
3. fully qualified name.

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 30

1) Using packagename.*

If you use package.* then all the classes and interfaces of this package

will be accessible but not subpackages.

The import keyword is used to make the classes and interface of another

package accessible to the current package.

Example of package that import the packagename.*

//save by

A.java package

pack; public

class A
{
public void msg(){System.out.println("Hello");}

}

//save by

B.java package

mypack;

import pack.*;

class B
{

public static void main(String args[])

{

A obj = new A();

obj.msg();

}
}
Output:Hello

2) Using packagename.classname

If you import package.classname then only declared class of this package

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 31

will be accessible.

Example of package by import package.classname

//save by A.java

package pack;
public class A
{
public void msg(){System.out.println("Hello");

}

}

//save by

B.java package

mypack;

import pack.A;

class B
{

public static void main(String args[])

{

A obj = new A();

obj.msg();
}

}
Output:Hello

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 32

3) Using FUlly QUalified name

If you use fully qualified name then only declared class of this package will

be accessible. Now there is no need to import. But you need to use fully

qualified name every time when you are accessing the class or interface.

It is generally used when two packages have same class name e.g. java.util

and java.sql packages contain Date class.

Example of package by import fully qualified name

//save by

A.java package

pack; public

class A
{

public void msg()

{

System.out.println("Hello");
}

}

//save by

B.java package

mypack; class

B
{

public static void main(String args[])

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 33

{

pack.A obj = new pack.A();//using fully qualified name

obj.msg();
}

}
Output:Hello

Access Modifiers/Specifiers

The access modifiers in java specify accessibility (scope) of a data

member, method, constructor or class.

There are 4 types of java access modifiers:

1. private
2. default

3. protected

4. public

1) private access modifier

The private access modifier is accessible only within class.

2) default access modifier

If you don't use any modifier, it is treated as default by default. The

default modifier is accessible only within package.

3) protected access modifier

The protected access modifier is accessible within package and outside

the package but through inheritance only.

The protected access modifier can be applied on the data member,

method and constructor. It can't be applied on the class.

4) public access modifier

The public access modifier is accessible everywhere. It has the widest

scope among all other modifiers.

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 34

Understanding all java access modifiers by a simple table.

Access

Modifie

r

withi

n

class

within

packag

e

outside package by

subclass only

outside

packag

e

Private Y N N N

Default Y Y N N

Protected Y Y Y N

Public Y Y Y Y

Interface in java

✓ An interface in java is a blueprint of a class. It has static final

variables and abstract methods.

✓ The interface in java is a mechanism to achieve abstraction. There

can be only abstract methods in the java interface does not contain

method body. It is used to achieve abstraction and multiple

inheritance in Java.

✓ It cannot be instantiated just like abstract class.

✓ Interface fields are public, static and final by default, and methods

are public and abstract.

There are mainly three reasons to use interface. They are given below.

• It is used to achieve abstraction.

• By interface, we can support the functionality of multiple inheritance.

Understanding relationship between classes and interfaces

As shown in the figure given below, a class extends another class, an

interface extends another interface but a class implements an

interface.

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 35

Example 1

In this example, Printable interface has only one method, its

implementation is provided in the Pgm1 class.

interface printable
{

void print();

}

class Pgm1 implements printable
{

public void print()
{

System.out.println("Hello");
}

}

class IntefacePgm1
{

public static void main(String args[])
{

Pgm1 obj = new Pgm1

(); obj.print();
}

}

Output

Hello

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 36

Example 2

In this example, Drawable interface has only one method. Its implementation

is provided by Rectangle and Circle classes. In real scenario, interface is

defined by someone but implementation is provided by different

implementation providers. And, it is used by someone else. The

implementation part is hidden by the user which uses the interface.

//Interface declaration: by first

user interface Drawable
{

void draw();

}

//Implementation: by second user

class Rectangle implements Drawable
{

public void draw()

{

System.out.println("drawing rectangle");
}

}

class Circle implements Drawable

{

public void draw()
{

System.out.println("drawing circle");

}

}

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 37

//Using interface: by third

user class TestInterface1
{

public static void main(String args[])

{

//In real scenario, object is provided by method e.g.

getDrawable()

Drawable d=new Circle();

d.draw();

}

}

Output:

drawing circle

Multiple inheritance in Java by interface

✓ If a class implements multiple interfaces, or an interface extends

multiple interfaces i.e. known as multiple inheritance.

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 38

Example

interface Printable

{

void print();

}

interface Showable

{

void show();

}

class Pgm2 implements Printable,Showable

{

public void print()

{
System.out.println("Hello");

}

public void show()

{
System.out.println("Welcome");

}
}

Class InterfaceDemo
{

public static void main(String args[])

{

Pgm2 obj = new Pgm2 ();

obj.print();

obj.show();

}

}

Output:

Hello

welcome

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 39

Multiple inheritance is not supported through class in java but it is

possible by interface, why?

✓ As we have explained in the inheritance chapter, multiple inheritance

is not supported in case of class because of ambiguity.

✓ But it is supported in case of interface because there is no ambiguity

as implementation is provided by the implementation class. For

example:

Example

interface Printable

{

void print();

}

interface Showable

{

void print();

}

class InterfacePgm1 implements Printable, Showable
{

public void print()

{

System.out.println("Hello");
}

}
class InterfaceDemo

{

public static void main(String args[])

{

InterfacePgm1 obj = new

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 40

InterfacePgm1 (); obj.print();
}

}

Output

:

 Hello

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 41

As you can see in the above example, Printable and Showable interface have

same methods but its implementation is provided by class TestTnterface1, so

there is no ambiguity.

Interface inheritance

✓ A class implements interface but one interface extends another

interface . interface Printable
{

void print();

}

interface Showable extends Printable

{

void show();

}

class InterfacePgm2 implements Showable

{

public void print()
{

System.out.println("Hello");

}

public void show()

{

System.out.println("Welcome");

}

Class InterfaceDemo2

{

public static void main(String args[])

{

InterfacePgm2 obj = new

InterfacePgm2 (); obj.print();

obj.show();

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 42

}

}

Output:

Hello

welcome

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 43

 Program to implement Stack

public class StackDemo
{

private static final int

capacity = 3; int arr[] = new

int[capacity];

int top = -1;

public void push(int pushedElement)

{

if (top < capacity - 1)

{

top++;

arr[top] = pushedElement;

System.out.println("Element " + pushedElement + " is pushed to

Stack !")

;

printElements();

}

else

{

System.out.println("Stack Overflow !");

}

}

public void pop()

{

if (top >= 0)

{

}

els

e

{

}

}

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 44

top--;

System.out.prin

tln("Pop

operation done

!");

System.out.println("Stack Underflow !");

public void printElements()

{

if (top >= 0)

{

System.out.println("Elements in

stack :"); for (int i = 0; i <= top; i++)
{

System.out.println(arr[i]);

}

}

}

class MyPgm

{

public static void main(String[] args)

{

StackDemo stackDemo = new

StackDemo();

stackDemo.pop();

stackDemo.push(23);

stackDemo.push(2);

stackDemo.push(73);

stackDemo.push(21);

stackDemo.pop();

stackDemo.pop();

stackDemo.pop();

stackDemo.pop();

}

}

Inheritance,Packages and Interfaces

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 45

Output

Multithreading

Hamsashree M K,Dept.of ECE,BGSIT Page 1

Syllabus:

Multithreading: The Java Thread Model, The Main Method, Creating a

Thread, Creating Multiple Thread, Using isAlive() and join(),Thread

priorities,Synchronization,Interthread Communication,Suspending,Resuming

and Stopping Threads, Using Multithreading

Multithreading

Hamsashree M K,Dept.of ECE,BGSIT Page 2

Module 3: Multithreading and Event handling

1. Multithreading programming :

• Multithreading is a conceptual programming paradigm where a program is

divided into two or more subprogram, which can be implemented at the same

time in parallel.

• This is something similar to dividing a task into subtask and assigning them

to processor for execution independently and simultaneously.

• Multithreading is a specialized form of multitasking. In process-based

multitasking, a program is the smallest unit of code that can be dispatched

by the scheduler.

• In a thread-based multitasking environment, the thread is the smallest unit

of dispatchable code. This means that a single program can perform two or

more tasks simultaneously.

Multithreading

Hamsashree M K,Dept.of ECE,BGSIT Page 3

2 .Thread:

• The small unit of program or sub module is called as thread.

• Each thread defines a separate path of execution

• Threads that do things like memory management and signal handling but

from the application programmer's point of view, you start with just one

thread, called the main thread.

• Main thread has the ability to create additional threads.

3. Life cycle of thread:

Thread can enter into different state during life of thread, different stages in

thread are as follows:

• New born

• Runnable

• Running

• Dead

• Blocked

New Born state:

• When we create the thread class object, then thread is said to be born and

move to new born state. But still thread is not under running state.

Multithreading

Hamsashree M K,Dept.of ECE,BGSIT Page 4

• Thread can be moved to either one of two state as follows:

• Thread can move from born state to dead state when we invoke stop()

method.

• Thread can move from born state to runnable state when we invoke start()

method.

Runnable state:

• Runnable state means thread is ready for execution and waiting for the

processor to free.

• All thread are joined in queue and waiting for execution.

• If all the threads have equal priority, Then they are given a time slot for

execution in round robin fashion ie. FCFS fashion.

Running state:

Running state means, Thread is under execution. Thread will run until its relinquish

control on its own or its is preempted by the higher priority thread.

Blocked state:

• Thread is said to be blocked when it is pre-empted from entering into

runnable state and subsequently the running state.

• This can be happen when thread is suspend, wait, sleep in order to satisfy

certain requirements.

Dead State:

• Thread can be killing as soon as its born state by calling stop() method.

• Thread will automatically kill, as soon as its completed the operation

3.Creating thread:

 Thread can be created in two ways:

• By creating a thread class(Extending Thread class)

• By converting a class to a Thread Class(Implementing Runnable interface)

Multithreading

Hamsashree M K,Dept.of ECE,BGSIT Page 5

1.By Creating a Thread class(Extending Thread class):

• Declare a class by extending Thread Class

• implement the run() method,Where run() method is the override method in

order to implement the actual code to be executed by Thread.

• Create a thread object and call a start method to initiate the thread

execution

Syntax:

class class_name extends Thread

{

public void run()

{

/*Implement actual code*/

}

public static void main(String ar[])

{

class_name object=new class_name();

object.start();

}

}

Program:

class A extends Thread

{

public void run()

{

for(int i=0;i<10;i++)

System.out.println(“A class=”+i);

}

}

class B extends A

{

public void run()

{

Multithreading

Hamsashree M K,Dept.of ECE,BGSIT Page 6

for(int i=0;i<10;i++)

System.out.println(“class B=”+i);

}

public static void main(String ar[])

{

A a1=new A();

B b1=new B();

a1.start();

b1.start();

}

}

2.By converting a class to a Threadable Class(Implementing Runnable

interface)

• Runnable interface declare the run() method that is required for

implementing thread in our program. The following are the steps are taken to

implement the runnable interface.

• Declare the class by implementing Runnable interface

• Implement the run() method.

• Crteate a thred by defining an object that is instantiated from this

Runnabel class as the target of that thread

• Call the start() method to run the thread.

Syntax:

class Class_Name implements Runnable

{

public void run()

{

/* Implements operation */

}

public static void main(String ar[])

{

Class_Name object=new Class_Name();

Thread object1=new Thread(object);

Multithreading

Hamsashree M K,Dept.of ECE,BGSIT Page 7

object1.start();

}

}

Program:

class A implements Runnable

{

public void run()

{

for(int i=0;i<10;i++)

System.out.println(“Class A=”+i);

}

}

class B implements Runnable

{

public void run()

{

for(int i=0;i<10;i++)

System.out.println(“class B=”+i);

}

public static void main(String ar[])

{

A a1=new A();

B b1=new B();

Thread t1=new Thread(a1);

Thread t2=new Thread(b1);

t1.start();

t2.start();

}

}

5. Threads methods

The different threads methods are as follows:

Yield(),stop(),suspend(),resume(),wait(),notify(),notifyall().

1.yield()

Multithreading

Hamsashree M K,Dept.of ECE,BGSIT Page 8

Calling yield() will move the current thread from running to runnable, to give other

threads a chance to execute. However the scheduler may still bring the same

thread back to running when processor is free.

Program:

class A extends Thread

{

public void run()

{

for(int i=0;i<10;i++)

{

if(i==2) yield();

}

}

}

class B

{

public static void main(String ar[])

{

A a1=new A();

a1.start();

}

}

Stop():

When stop() is called then processor will kill thread permanently.It means

thread move to dead state.

class A extends Thread

{

public void run()

{

for(int i=0;i<10;i++)

{

if(i==2) stop();

}

Multithreading

Hamsashree M K,Dept.of ECE,BGSIT Page 9

}

}

class B

{

public static void main(String ar[])

{

A a1=new A();

a1.start();

}

}

Sleep():

• When sleep() is called then processor will stop the execution of thread for

the specified amount of time from the execution.

• This static sleep() method causes the thread to suspend execution for a

given time. The sleep method has two overloaded versions:

• static void sleep (long milliseconds) throws Interrupted Exception

• static void sleep (long milliseconds, int nanoseconds) throws Interrupted

Exception

Suspend():

• When suspend() is called then processor Sends the calling thread into block

state.

• Using resume() method its bring the thread back from block state to running

state.

Multithreading

Hamsashree M K,Dept.of ECE,BGSIT Page 10

Program for sleep and suspend resume methods:

class A extends Thread

{

public void run()

{

for(int i=0;i<10;i++)

{

if(i==2) try { sleep(100);} catch(Exception e){ s.o.p(e) resume();}

}

}

}

class B extends Thread

{

public void run()

{

for(int i=0;i<10;i++)

{

if(i==2) suspend();

}

}

}

class Mainclass

{

public static void main(String ar[])

{

A a1=new A();

B b1=new B();

a1.start();

b1.start();

}

}

Multithreading

Hamsashree M K,Dept.of ECE,BGSIT Page 11

Thread Priority:

• Each thread assigned a priority,which effects the order in which it is

scheduled for running.

• Thread of same priority are given equal treatment by the java scheduler and

there for they share the processor on FCFS basis

• Java permits us to set the priority of the thread using setPriority()methods.

 Final void setPriority(int level)

• Where level specify the new priority setting for the calling thread. Level is

the integer constant as follows:

MAX_PRIORITY

MIN_PRIORITY

NORM_PRIORITY

• The MAX_priority value is 10,MIN_PRIORITY values is 1 And

NORM_PRIORITY is the default priority whose value is 5.

• We can also obtain the current priority setting value by calling getPriority()

method of thread.

Final int getPriority()

Program:

class A extends Thread

{

public void run()

{

for(int i=0;i<10;i++)

{

System.out.println(“class a thread=”+i);

}

}

}

Multithreading

Hamsashree M K,Dept.of ECE,BGSIT Page 12

class B extends Thread

{

public void run()

{

for(int i=0;i<10;i++)

{

s.o.p(“Class b thread=”+i);

}

}

class MainThread

{

public static void main(String ar[])

{

A a1=new A();

B b1=new B();

a1.setPriority(Thread.MAX_PRIORITY);

b1.setPriority(Thread.MIN_PRIORITY);

a1.start();

b1.start();

b1.setPriority(a1.getPriority()+10);

}

}

Synchronization:

• When two or more thread needs access to the shared resource, they need

some way to ensure that the resource will be used by only one thread at a

time.

• The process by which this is achieved is called synchronization.

• Key to synchronized is the concepts of monitor or semaphores. A monitor is

an object that is used as mutually exclusive lock or mutex. Only one thread

can own a monitor at a given time. When one thread acquires a lock it is said

to have entered the monitor.

Multithreading

Hamsashree M K,Dept.of ECE,BGSIT Page 13

• All other thread attempting to enter the locked monitor will be suspended

until the first thread exits the monitor. These other thread are said to be

waiting for monitor.

• This can be achieved by using keyword synchronized to method.

Syntax:

synchronized void method_name()

{ /* implementation or operation

}

Program:

class A

{

Synchronized void display()

{

for(int i=0;i<10;i++)

System.out.println(“i=”+i);

}

}

class B extends Thread

{

public void run()

{

A a1=new A();

System.out.println(“class A thread”);

For(int i=0;i<10;i++)

a1.display();

}

}

class C extends Thread

{

public void run()

{

A a1=new A();

Sysem.out.println(“class B thread”);

Multithreading

Hamsashree M K,Dept.of ECE,BGSIT Page 14

For(int i=0;i<10;i++)

a1.display();

}

}

class D

{

public static void main(String ar[])

{

B b1=new B();

C c1=new C();

b1.start();

c1.start();

}

}

Inter-thread communication:

• Inter-thread communication can be defined as exchange of message

between two or more threads. The transfer of message takes place before

or after changes of state of thread.

• The inter-thread communication can be achieved with the help of three

methods as follows:

Wait(),notify() notifyall()

Wait()- tells the calling thread to give up the monitor and go to sleep

mode until some of other thread enters the same monitor and call the

notify() methods

Notify()-wakes up a thread that called wait() method on the same object.

Notifyall()-wakes up all thread that called wait() methods on the same

object.

• Inter-thread communication can be implemented by using the key word as

synchronized to methods.

• Different types of inter-thread communication example are as follows:

Multithreading

Hamsashree M K,Dept.of ECE,BGSIT Page 15

• Producer-consumer problem

• Reader –writer problem

• Bounded-Buffer problem(Also called as Producer-consumer

problem)

Producer-consumer problem/bounded buffer problem:

• Producer thread goes on producing an item unless an until buffer is full.

• Producer thread check before producing an item weather buffer is full or

not, if buffer is full producer wait producing an item unless and until

consumer thread consume a item.

• Consumer thread goes on consuming an item which is produced by the

producer. The consumer thread check weather buffer is empty before

consuming. If buffer is empty consumer thread as to wait until producer has

to produce an item.

Program:

class A

{

int stack[]=new int[10];

int top=-1;

Synchronized void produce(int item)

{

if(top==10)

try

{

 wait();

}

catch(Exception e)

{

System.out.println(e);

Multithreading

Hamsashree M K,Dept.of ECE,BGSIT Page 16

}

Satck[++top]=item;

notify();

}

Synchronized void consume()

{

if(top==-1)

try

{

 wait();

}

catch(Exception e)

{

System.out.println(e);

}

item=Satck[top++];

System.out.println(“consumed item is”+item);

notify();

}

}

class Producer extends Thread

{

public void run()

{

A a1=new A();

for(int i=0;i<10;i++)

a1.produce(i);

}

}

class Consumer extends Thread

{

public void run()

{

A a1=new A();

for(int i=0 ;i<12;i++)

a1.consume();

}

Multithreading

Hamsashree M K,Dept.of ECE,BGSIT Page 17

}

class MainThread

{

public static void main(String ar[])

{

Produce p=new Produce();

Consume c=new Consume();

p.start();

c.start();

}

}

Reader-writer problem:

• Reader thread reading an item from the buffer, Where as writer thread

writing an item to buffer.

• If reader is reading then writer has to wait unless and until reading is finish.

• While writing thread writing an content then no other thread read the

content unless and until writing is over.

• This problem can be achieved using wait, notify and nitifyall method and

using synchronized keyword to method.

Multithreading

Hamsashree M K,Dept.of ECE,BGSIT Page 18

 isAlive() and join()

• The final isAlive() method returns true if the thread is still running or the

Thread has not terminated.

• final join()

• The final join() method waits until thread on which it is called is terminated.

For example, thread1.join() suspends the current thread until thread1 dies.

• The join() method can throw an Interrupted Exception if the current thread

is interrupted by another thread.

Program:

 class A extends Thread

{

public void run()

{

for(int i=0;i<10;i++)

System.out.println(“class A=”+i);

}

}

Class B extends Thread

{

public void run()

{

for(int i=0;i<10;i++)

System.out.println(“class B=”+i);

}

}

class C

{

public static void main(String args[])

{

A a1=new A();

Multithreading

Hamsashree M K,Dept.of ECE,BGSIT Page 19

B b1=new B();

a1.start();

b1.start();

System.out.println(a1.isAlive());

System.out.println(b1.isAlive());

try

{

A1.join();

B1.join();

}

catch(Exception e)

{

System.out.println(e);

}

System.out.println(“main thread dead”);

}

}

 Creating multiple thread:

• More than one thread can be created using single object of thread class.

Where all the thread can execute parallel.

Program:

class A implements Runnable

{

A()

{

Thread t=new Thread(this);

t.start();

}

public void run()

{

Multithreading

Hamsashree M K,Dept.of ECE,BGSIT Page 20

for(int i=0;i<10;i++)

System.out.println(i);

}

}

class MainThread

{

public static void main(String args[])

{

A a1=new A();

A a2=new A();

}

}

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 1

Syllabus:

Event Handling: Two Event Handling Mechanisms, Delegation Event Model,

Event Classes, Sources of Events, Listener Interfaces, Using the Delegation

Event Model, Adapter Classes, Inner Classes

programs.

APPLETS: Applet Basics, Applet Architecture, An Applet Skeleton, Simple Applet

Display Methods ,The AppletHTML Tag,Passing Parameters to

Applets,getDocumentBase() and get Codebase(),Applet Context and show Document()

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 2

Module 4 : Event Handling

Event Handling

 Event Handling is the mechanism that controls the

event and decides what should happen if an event occurs. This mechanism has

the code which is known as event handler that is executed when an event

occurs. Java Uses the Delegation Event Model to handle the events. This model

defines the standard mechanism to generate and handle the events. Let’s have

a brief introduction to this model.

 Any program that uses GUI (graphical user interface) such as Java

application written for windows, is event driven. Event describes the change of state of

any object.

Example: Pressing a button, Entering a character in Textbox.

Two Event Handling Mechanism

 Events are handled by the original version of java (1.0) and modern versions of

Java.

 The 1.0 method of event handling is still supported, but it is not recommended

for new programs.

 Many of the methods that support the old 1.0 event model have been

deprecated.

1.Delegation event model :

• It defines standard and consistent mechanisms to generate and process events.

Here the source generates an event and sends it to one or more listeners.

• The listener simply waits until it receives an event. Once it is obtained, It

processes this event and returns.

• Listeners should register themselves with a source in order to receive an even

notification. Notifications are sent only to listeners that want to receive them.

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 3

Components of Event Handling

Event handling has three main components,

Events:

• An event is a change of state of an object. In the delegation model, an event is

an object that describes a state change in a source.

• It can be generated as a consequence of a person interacting with the elements

in a graphical user interface.

Events Source:

• Event source is an object that generates an event.

• This occurs when the interval state of that object changes in some way.Source

event generate more than one type of events.

Listeners:

A listener is an object that listens to the event. A listener gets notified when an event

occurs.It has two major requirements

• It must have been registered with one or more source to receive notification

about specific types of event

• It must implement methods to receive and process these notification

2.Event class:

The classes that represent events are at the core of Java’s event handling mechanism.

Event Object: It is at the root of the Java event class hierarchy in java.util. It is

the super class for all events.

It’s one constructor is shown here: Event Object (Object src)

Here, src is the object that generates this event. Event Object contains two methods:

get Source() and to String(). The get Source () method returns the source of the

event.

Event Class Description

Action Event Generated when a button is pressed, a list

item is

Double-clicked, or a menu item is

selected.

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 4

Adjustment Event Generated when a scroll bar is

manipulated.

Component Event Generated when a component is hidden,

moved, resized,

or becomes visible.

Container Event Generated when a component is added to

or removed

From a container.

Focus Event Generated when a component gains or

loses

Keyboard focus.

Input Event Abstract super class for all component

input event classes.

Item Event Generated when a check box or list item

is clicked; also

occurs when a choice selection is made or

a checkable

Menu item is selected or deselected.

Key Event Generated when input is received from

the keyboard.

Mouse Event Generated when the mouse is dragged,

moved, clicked,

Pressed, or released; also generated when

the mouse enters or exits a component.

MouseWheelEvent Generated when the mouse wheel is

moved.

Text Event Generated when the value of a text area

or text field is Changed.

Window Event

Generated when a window is activated,

closed, deactivated,

deiconified, iconified, opened, or quit.

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 5

1.ActionEvent Class

• An Action Event is generated when a button is pressed, a list item is double-

clicked, or

• a menu item is selected.

• The ActionEvent class defines four integer constants that can be used to

identify any modifiers associated with an action event:

ALT_MASK,CTRL_MASK, META_MASK, and SHIFT_MASK.

• ActionEvent has these three constructors:

ActionEvent(Object src, int type, String cmd)

ActionEvent(Object src, int type, String cmd, int modifiers)

ActionEvent(Object src, int type, String cmd, long when, int modifiers)

• Here, src is a reference to the object that generated this event. The type of

the event is specified by type, and its command string is cmd. The argument

modifiers indicates which modifier keys (ALT, CTRL, META, and/or SHIFT)

were pressed when the event was generated. The when parameter specifies

when the event occurred

2 The AdjustmentEvent Class

An AdjustmentEvent is generated by a scroll bar There are five types of adjustment

events each defines integer constants that can be used to identify them

BLOCK_DECREMENT-the user clicked inside the scroll bar to decrese its value

BLOCK_INCREMENT- The user clicked inside the scroll bar to increses its value

TRACK-the slider was dragged

UNIT_DECREMENT-The button at the end of scroll bar was clicked to decreses

its value

UNIT_INCREMENT-The button at the end of scroll bar was clicked to increses

its value

Here is one AdjustmentEvent constructor

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 6

AdjustmentEvent(Adjustable src,int id,int type,int data);

Here, src is a reference to the object that generated this event. The type of the

event is specified by type and its associated data is data.

The getAdjustable() method returns the object that generated the event.

getAdjustmentType() method returns one of the constant defined by the

AdjustmentEvent.

3.ComponentEvents class:

A ComponentEvent is generated when the size, position, or visibility of a component is

changed. There are four types of component events .There are four integer constanst

COMPONENT_HIDDEN-the component was hidden

COMPONENT_MOVED-the component was moved

COMPONENT_RESIZED-the component was resized

COMPONENT_SHOWN-the component was shown.

There is one constructor

ComponentEvent(Component src,int type);

Here, src is a reference to the object that generated this event. The type of the

event is specified by type.

getComponent() method returns the component that was generated the event.

4.ContainerEvent class:

A ContainerEvent is generated when a component is added to or removed from a

container

Its has two integer constant:

COMPONENT_ADDED-the component has been added to.

COMPONENT_REMOVED-The component has been removed out.

There is one constructor:

ContainerEvent(Component src,int type, component comp);

Here, src is a reference to the object that generated this event. The type of the

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 7

event is specified by type and comp is the argument that indicates that component is

added.

getContainer() method generates the event.

getChild() method returns a reference to the component that was added or removed

from the container.

5.ItemEvent classs:

An ItemEvent is generated when a check box or a list item is clicked or when a

checkable menu item is selected or deselected.there are two ineger constants:

DESELECTED-the user deselected an item

SELECTED-user selected an item

One constructor:

ItemEvent(itemSelectable src ,int type,object entry,int state);

Here, src is a reference to the object that generated this event. The type of the

event is specified by type.

getItem()method can be used to obtain a reference to the item that generated an

event.

getItemSelectable()-method can be used to obtain a reference to the itemSelectable

object that generated an event.

getStateChange()-method returns the state change for the event.

6.KeyEvent class:

A KeyEvent is generated when keyboard input occurs.

There is one constructor:

KeyEvent(Component src,int type,long when,int modifier,int code,char ch);

Here, src is a reference to the object that generated this event. The type of the

event is specified by type.the system time at which key pressed,modifier argument

indicates which modifier were pressed when key event generated.

getChar() methods returns CHAR_UNDEFINED when a KEY_TYPED event occurs.

getKeyCode() method returns VK_UNDEFINED.

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 8

7.MouseEVENT class:

There are eight types of mouse event:

MOUSE_CLICKED-the user clicked the mouse

MOUSE_DRAGGED-the user dragged the mouse

MOUSE_ENTERED-the user entered the mouse

MOUSE_EXITED-the user exit the mouse

MOUSE_MOVED-the user moved the mouse

MOUSE_PRESSED-the user pressed the mouse

MOUSE_RELEASED-the user released the mouse

There is one constructor:

MouseEvent(Component src,int type,long when,int modifier,int x,int y,int

click,boolen triggersPopup)

Here, src is a reference to the object that generated this event. The type of the

event is specified by type.the system time at which key pressed,modifier argument

indicates which modifier were pressed when key event generated.

8.TextEvent class:

The TextEvent Class Instances of this class describe text events. These are

generated by text fields and text areas when characters are entered by a user or

program.

There is one constructor:

TextEvent(Object src,int type);

Here, src is a reference to the object that generated this event. The type of the

event is specified by type

9.FocusEvent classs

A Focus Event is generated when a component gains or losses input focus. These

events

are identified by the integer constants FOCUS_GAINED and FOCUS_LOST.

Focus Event is a subclass of Component Event and has these constructors:

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 9

FocusEvent(Component src, int type)

FocusEvent(Component src, int type, boolean temporaryFlag)

Focus Event(Component src, int type, boolean temporaryFlag, Component other)

Here, src is a reference to the component that generated this event. The type of the

event is specified by type. The argument temporaryFlag is set to true if the focus

event is

temporary. Otherwise, it is set to false. (A temporary focus event occurs as a result of

another user interface operation.

You can determine the other component by calling getOppositeComponent(),

shown here.

Component getOppositeComponent()

The isTemporary() method indicates if this focus change is temporary. Its form is

shown here:

boolean isTemporary()

The method returns true if the change is temporary. Otherwise, it returns false.

10.InputEvent class

The abstract class InputEvent is a subclass of ComponentEvent and is the superclass

for component input events. Its subclasses are KeyEvent and MouseEvent.

THE JAVA LIBRARY

InputEvent defines several integer constants that represent any modifiers, such as

the control key being pressed, that might be associated with the event. Originally, the

InputEvent class defined the following eight values to represent the modifiers.

ALT_MASK BUTTON2_MASK META_MASK

ALT_GRAPH_MASK BUTTON3_MASK SHIFT_MASK

BUTTON1_MASK CTRL_MASK

To test if a modifier was pressed at the time an event is generated, use the

isAltDown(), isAltGraphDown(), isControlDown(), isMetaDown(), and

isShiftDown() methods. The forms of these methods are shown here:

boolean isAltDown()

boolean isAltGraphDown()

boolean isControlDown()

boolean isMetaDown()

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 10

boolean isShiftDown()

You can obtain a value that contains all of the original modifier flags by calling

the getModifiers() method. It is shown here:

int getModifiers()

You can obtain the extended modifiers by called getModifiersEx(), which is shown

here.

int getModifiersEx()

11.MouseWheelEvent Class

The MouseWheelEvent class encapsulates a mouse wheel event. It is a subclass

of MouseEvent .

THE JAVA LIBRARY

If a mouse has a wheel, it is located between the left and right buttons. Mouse wheels

are used for scrolling. MouseWheelEvent defines these two integer constants.

WHEEL_BLOCK_SCROLL A page-up or page-down scroll event occurred.

WHEEL_UNIT_SCROLL A line-up or line-down scroll event occurred.

MouseWheelEvent defines the following constructor.

MouseWheelEvent(Component src, int type, long when, int modifiers,

int x, int y, int clicks, boolean triggersPopup,

int scrollHow, int amount, int count)

Here, src is a reference to the object that generated the event. The type of the event

is specified by type. The system time at which the mouse event occurred is passed in

when. The modifiers argument indicates which modifiers were pressed when the event

occurred. The coordinates of the mouse are passed in x and y. The number of clicks

the wheel has rotated is passed in clicks. The triggersPopup flag indicates if this event

causes a pop-up menu to appear on this platform. The scrollHow value must be either

WHEEL_UNIT_SCROLL or WHEEL_BLOCK_SCROLL. The number of units to scroll

is passed in amount. The count parameter indicates the number of rotational units that

the wheel moved.

MouseWheelEvent defines methods that give you access to the wheel event.

To obtain the number of rotational units, call getWheelRotation(), shown here.

int getWheelRotation()

It returns the number of rotational units. If the value is positive, the wheel moved

counterclockwise. If the value is negative, the wheel moved clockwise.

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 11

To obtain the type of scroll, call getScrollType(), shown next.

int getScrollType()

It returns either WHEEL_UNIT_SCROLL or WHEEL_BLOCK_SCROLL.

If the scroll type is WHEEL_UNIT_SCROLL, you can obtain the number of units

to scroll by calling getScrollAmount(). It is shown here.

int getScrollAmount()

The WindowEvent Class

There are ten types of window events. The Window Event class defines integer

Constants that can be used to identify them. The constants and their meanings are

shown here:

WINDOW_ACTIVATED The window was activated.

WINDOW_CLOSED

The window has been closed.

WINDOW_CLOSING The user requested that the window

be closed.

WINDOW_DEACTIVATED

The window was deactivated.

WINDOW_DEICONIFIED

The window was deiconified.

WINDOW_GAINED_FOCUS The window gained input focus.

WINDOW_ICONIFIED

The window was iconified.

WINDOW_LOST_FOCUS

The window lost input focus.

WINDOW_OPENED The window was opened.

WINDOW_STATE_CHANGED The state of the window changed.

WindowEvent is a subclass of ComponentEvent. It defines several constructors.

The first is

WindowEvent(Window src, int type)

Here, src is a reference to the object that generated this event. The type of the

event is type.

WindowEvent(Window src, int type, int fromState, int toState)

WindowEvent(Window src, int type, Window other, int fromState, int toState)

Here, other specifies the opposite window when a focus event occurs. The fromState

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 12

specifies the prior state of the window and toState specifies the new state that the

window will have when a window state change occurs.

The most commonly used method in this class is getWindow(). It returns the

Window object that generated the event. Its general form is shown here:

Window getWindow().

3.Source Event:

Following is the list of commonly used controls while designed GUI using AWT.

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 13

4.Event Listeners:

1.ActionListener interface:

This interface define the actionPerformed() method that is invoked when an action

event occurs.

void actionPerformed(ActionEvent ae);

2.AdjustmentListener interface:

This interface define the adjustmentValueChanged() method that is invoked when an

adjustment event ocuurs.

void adjustmentValueChanged(AdjustmentEvent ae);

3.ComponentListener inetface:

This inetface define four methods that are invoked when a component is

resized,moved,shown etc.

void componentResized(ComponentEvent ce);

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 14

void componentMoved(ComponentEvent ce);

void componentShown(ComponentEvent ce);

void componentHidden(ComponentEvent ce);

4.ItemListener inetface:

This interface define the itemStateChanged() method that is invoked when the state

of an item changed.

void itemStateChanged(ItemEvent ie);

5.KeyListener interface:

This interface define three method,when key is ressed,released.

void keyPressed(KeyEvent ke);

void keyRelesed(KeyEvent ke);

void keyTyped(KeyEvent ke);

5.MouseListener interface:

This inetface define five methds

void mouseClicked(MouseEvent me);

void mouseEneterd(MouseEvent me);

void mouseExited(MouseEvent me);

void mousePressed(MouseEvent me);

void mouseReleased(MouseEvent me);

Program for handling keyboard events

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

import java.applet.*;

import java.awt.event.*;

import java.awt.*;

public class Test extends Applet implements KeyListener

{

String msg="";

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 15

public void init()

{

addKeyListener(this);

}

public void keyPressed(KeyEvent k)

{

showStatus("KeyPressed");

}

public void keyReleased(KeyEvent k)

{

System.out.println("KeyRealesed");

}

public void keyTyped(KeyEvent k)

{

msg = msg+k.getKeyChar();

repaint();

}

public void paint(Graphics g)

{

g.drawString(msg, 20, 40);

}}

5.Adapter class:

Adapters are abstract classes for receiving various events. The methods in these

classes are empty. These classes exists as convenience for creating listener objects.

AWT Adapters:

Following is the list of commonly used adapters while listening GUI events in AWT.

Sr.

No.
Adapter class Description

1 FocusAdapter An abstract adapter class for receiving focus events.

2 KeyAdapter An abstract adapter class for receiving key events.

3 MouseAdapter An abstract adapter class for receiving mouse events.

4
MouseMotionAdapter An abstract adapter class for receiving mouse motion

events.

5 WindowAdapter An abstract adapter class for receiving window events.

http://www.tutorialspoint.com/awt/awt_focusadapter.htm
http://www.tutorialspoint.com/awt/awt_keyadapter.htm
http://www.tutorialspoint.com/awt/awt_mouseadapter.htm
http://www.tutorialspoint.com/awt/awt_mousemotionadapter.htm
http://www.tutorialspoint.com/awt/awt_windowadapter.htm

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 16

Program :

class A extends Applet

{

public void init()

{

addMoseListener(new B(this));

}

}

class B extends MouseAdater

{

A a1;

B(A a1)

{

this.a1=a1;

}

public void mouseClicked(MouseEvent me)

{

a1.showStatus(“mouse clicked”);

} }

6.Inner class/nested class:

• Class within other class is called nested class or inner class.

• Inner class is the member of outer class

• Outer class can access all the member of inner class, where as inner class

cannot access the outer class member.

Program:

class A extends Applet

{

public void inti()

{

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 17

addMoseListener(new B(this));

}

class B extends MouseAdater

{

public void mouseClicked(MouseEvent me)

{

a1.showStatus(“mouse clicked”);

}

}

}

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 18

APPLETS

The Applet Introduction:

✓ Applets are small Java program/applications that are accessed on an

Internet Server, transported over the Internet, automatically installed, and

run as part of a Web document

✓ An applet is a program written in the Java programming language that can be

included in an HTML page, much in the same way an image is included in a

page. When you use a Java technology enabled browser to view a page that

contains an applet, the applet's code is transferred to your system and

executed by the browser's Java Virtual Machine (JVM)

Two Types of Applets

There are two varieties of applets. They are

1. Based on the Applet class: Applet

2. Based on the Swing Class Applet: JApplet

1. Based on the Applet class.

➢ These Applet uses the Abstract Window Toolkit(AWT) to provide the

graphical user interface.

➢ This type of applet has been widely available since java was first created.

2. Based on the Swing Class Applet.

➢ This applet uses the swing class to provide GUI.

➢ Swing offers a rich and easier to use interface than AWT.

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 19

import java.applet.Applet;

import java.awt.Graphics;

public class HelloWorldApplet extends Applet

{

public void paint(Graphics g)

{

g.drawString("Hello world!", 50, 25);

}

}

➢ Swing based applets are the most popular in practice.

Applet Basics

✓ The reason people are excited about Java as more than just another OOP

language is because it allows them to write interactive applets on the web.

Hello World isn't a very interactive program, but let's look at a webbed

version.

OUTPUT

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 20

<html>

<head>

<title> hello world </title>

</head>

<body>

This is the applet:<P>

<applet code="HelloWorldApplet" width="150" height="50">

</applet>

</body>

</html>

✓ The applet version of HelloWorld is a little more complicated than the

HelloWorld application, and it will take a little more effort to run it as well.

✓ First type in the source code and save it into file called HelloWorldApplet.java.

Compile this file in the usual way. If all is well a file called

HelloWorldApplet.class will be created. Now you need to create an HTML file

that will include your applet. The following simple HTML file will do.

OUTPUT

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 21

✓ Save this file as HelloWorldApplet.html in the same directory as the

HelloWorldApplet.class file. When you have done that, load the HTML file into a

Java enabled browser and see the output in the browser window.

✓ If the applet compiled without error and produced a HelloWorldApplet.class file,

and yet you don't see the string "Hello World" in your browser chances are that

the .class file is in the wrong place. Make sure HelloWorldApplet.class is in the

same directory as HelloWorldApplet.html. Also make sure that your browsers

support Java or that the Java plugin has been installed. Not all browsers support

Java out of the box.

The Applet Class

✓ An applet is a small program that is intended not to be run on its own, but

rather to be embedded inside another application.

✓ The Applet class must be the super class of any applet that is to be

embedded in a Web page or viewed by the Java Applet Viewer. The Applet

class provides a standard interface between applets and their environment.

Method Summary

Void

destroy()

Called by the browser or applet viewer to inform this

applet that it is being reclaimed and that it should

destroy any resources that it has allocated.

AccessibleContext

getAccessibleContext()

Gets the AccessibleContext associated with this

Applet.

AppletContext

getAppletContext()

Determines this applet's context, which allows the

applet to query and affect the environment in which it

runs.

String

getAppletInfo()
Returns information about this applet.

AudioClip

getAudioClip(URL url)

Returns the AudioClip object specified by the URL

argument.

AudioClip

getAudioClip(URL url,

Returns the AudioClip object specified by the URL and

name arguments.

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 22

String name)

URL

getCodeBase()
Gets the base URL.

URL

getDocumentBase()

Returns an absolute URL naming the directory of the

document in which the applet is embedded.

Image

getImage(URL url)

Returns an Image object that can then be painted on

the screen.

Image

getImage(URL url,

String name)

Returns an Image object that can then be painted on

the screen.

Locale

getLocale()
Gets the Locale for the applet, if it has been set.

String

getParameter(String name)

Returns the value of the named parameter in the

HTML tag.

String[][]

getParameterInfo()

Returns information about the parameters than are

understood by this applet.

Void

init()

Called by the browser or applet viewer to inform this

applet that it has been loaded into the system.

Boolean

isActive()
Determines if this applet is active.

static AudioClip

newAudioClip(URL url)
Get an audio clip from the given URL.

Void

play(URL url)
Plays the audio clip at the specified absolute URL.

Void

play(URL url, String name)
Plays the audio clip given the URL and a specifier that

is relative to it.

Void

resize(Dimension d)
Requests that this applet be resized.

Void

resize(int width,

int height)

Requests that this applet be resized.

Void

setStub(AppletStub stub)
Sets this applet's stub.

Void Requests that the argument string be displayed in the

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 23

showStatus(String msg) "status window".

void start() Called by the browser or applet viewer to inform this

applet that it should start its execution.

void stop() Called by the browser or applet viewer to inform this

applet that it should stop its execution.

Applet Architecture

✓ An applet is a window-based program, its architecture different from the

console-based programs. There are two key concepts to understand the

architecture they are

1. Applets are Event driven

• An applet waits until an event occurs.

• The AWT notifies the applet about an event by calling event handler

that has been provided by the applet.The applet takes appropriate

action and then quickly return control to AWT

• All Swing components descend from the AWT Container class

2. User initiates interaction with an Applet (and not the other way

aroUND)

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 24

An Applet Skelton

// An Applet skeleton.

import java.awt.*;

import javax.swing.*;

/*

<applet code="AppletSkel" width=300 height=100>

</applet>

*/

public class AppletSkel extends JApplet

{

// Called first.

public void init()

{

// initialization

}

/* Called second, after init(). Also called whenever the applet is restarted. */

public void start()

{

// start or resume execution

}

// Called when the applet is stopped.

public void stop()

{

// suspends execution

}

/* Called when applet is terminated. This is the last method executed. */

public void destroy()

{

// perform shutdown activities

}

// Called when an applet's window must be restored.

public void paint(Graphics g)

{

// redisplay contents of window

}

}

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 25

OUTPUT

Applet Initialization and Termination/Applet Life Cycle

It is important to understand the order in which the various methods shown in the

skeleton are called. When an applet begins, the AWT calls the following

initialization methods, in

this sequence:

1. init()

2. start()

3. paint()

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 26

When an applet is terminated, the following sequence of method calls takes place:

1. stop()

2. destroy()

1. init()

The init() method is the first method to be called. This is where you should

initialize variables. This method is called only once during the run time of your

applet.

2. start()

The start() method is called after init(). It is also called to restart an

applet after it has been stopped. Whereas init() is called once—the first time an

applet is loaded start() is called each time an applet’s HTML document is displayed

onscreen. So, if a user leaves a web page and comes back, the applet resumes

execution at start().

3. paint()

The paint() method is called each time your applet’s output must be

redrawn. paint() is also called when the applet begins execution. Whatever the

cause, whenever the applet must redraw its output, paint() is called.

The paint() method has one parameter of type Graphics. This parameter

will contain the graphics context, which describes the graphics environment in

which the applet is running. This context is used whenever output to the applet is

required.

4. stop()

The stop() method is called when a web browser leaves the HTML document

containing the applet when it goes to another page, for example. When stop() is

called, the applet is probably running. You should use stop() to suspend threads

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 27

import java.applet.Applet;

import java.awt.Graphics;

public class HelloWorldApplet extends Applet

{

public void paint(Graphics g)

{

g.drawString("Hello world!", 50, 25);

}

}

that don’t need to run when the applet is not visible. You can restart them when

start() is called if the user returns to the page.

5. destroy()

The destroy() method is called when the environment determines that your

applet needs to be removed completely from memory. At this point, you should free

up any resources the applet may be using. The stop() method is always called

before destroy().

Simple Applet display methods

✓ Consider the above program to output a string to an applet, use drawString()

this is a member of the Graphics class, this drawstring is called from within

either update() or paint() as shown in the above program example .The

general form of is

drawString(String msg,int x, int y)

✓ The msg indicates that string to be output beginning at x,y. in java window

the upper-left corner location is 0,0.the drawstring() method will not

recognize newline character.

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 28

/* This Applet sets the foreground and background colors and out puts a string. */

import java.applet.*;

import java.awt.*;

public class Simple extends Applet

{

String msg;

// set the foreground and background colors.

public void init()

{

setBackground(Color.cyan);

setForeground(Color.red);

msg = "Initialized--";

}

✓ To set the background color of an applet window use setBackground() and

to set the foreground color for example the color in which text is shown use

setForeground().these methods are defined by Component and they have the

following general forms

void setBackground(Color newColor) ,

void setForeground(Color newColor)

The newColor specifies that new color. The class Color defines the constant shown

below that can be used to specify colors.

Example:

setBackround(Color.cyan);

setForeground(Color.red)

Example Program:

Color.black Color.lightGray Color.yellow

Color.blue Color.magenta Color.red

Color.cyan Color.orange Color.white

Color.darkGray Color.pink Color.gray Color.green

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 29

OUTPUT:

Requesting repainting;

✓ The repaint() method is defined by the AWT. It causes the AWT run time

system to call to your applet's update() method, which in its default

implementation, calls paint(). Again for example if a part of your applet

// Add to the string to be displayed.

public void start()

{

msg += " Starting --";

}

// Display the msg in the applet window.

public void paint(Graphics g)

{

msg += " Painting.";

g.drawString(msg, 10, 30);

}

}

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 30

void repaint()

void repaint(int left, int top, int width, int height)

void repaint(long maxDelay)

void repaint(long maxDelay, int x, int y, int width, int height)

needs to output a string, it can store this string in a variable and then call

repaint(). Inside paint(), you can output the string using drawstring().

The repaint method has four forms.

void repaint()

This causes the entire window to be repainted

void repaint(int left, int top, int width, int height)

This specifies a region that will be repainted. the integers left, top, width and

height are in pixels. You save time by specifying a region to repaint instead of the

whole window.

void repaint(long maxDelay)

void repaint(long maxDelay, int x, int y, int width, int height)

Calling repaint() is essentially a request that your applet be repainted sometime

soon. However, if your system is slow or busy, update() might not be called

immediately. This gives rise to a problem of update() being called sporadically. If

your task requires consistent update time, like in animation, then use the above two

forms of repaint(). Here, the maxDelay() is the maximum number of milliseconds

that can elaspe before update() is called.

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 31

import java.awt.*;

import java.applet.*;

import java.awt.Graphics;

public class statuswindow extends Applet

{

public void init()

{

setBackground(Color.green);

}

public void paint(Graphics g)

{

g.drawString("Hi this is in the applet window",10,20);

showStatus("shown in the status window");

}

}

Using the Status Window

✓ If the user has chosen to show the Status Bar in their browser then

messages can be put there from an applet.

The showStatus() method would do it for this applet, if the applet was

running in a browser.

Example

OUTPUT

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 32

The HTML APPLET Tag

✓ The APPLET tag is used to start an applet from both an HTML document and

from an applet viewer.

✓ An applet viewer will execute each APPLET tag that it finds in a separate

window, while web browsers like Netscape Navigator, Internet Explorer, and

HotJava will allow many applets on a single page.

The syntax for the standard APPLET tag is shown here. Bracketed items are

optional.

CODEBASE: CODEBASE is an optional attribute that specifies the base URL of the

applet code, which is the directory that will be searched for the applet’s

executable class file (specified by the CODE tag).

CODE: CODE is a required attribute that gives the name of the file containing your

applet’s compiled .class file. This file is relative to the code base URL of the

applet, which is the directory that the HTML file was in or the directory indicated

by CODEBASE if set.

< APPLET

[CODEBASE = codebaseURL]

CODE = appletFile

[ALT = alternateText]

[NAME = appletInstanceName]

WIDTH = pixels HEIGHT = pixels

[ALIGN = alignment]

[VSPACE = pixels] [HSPACE = pixels]

>

[< PARAM NAME = AttribUTEName VALUE = AttribUTEValUE>]

[< PARAM NAME = AttribUTEName2 VALUE = AttribUTEValUE>]

. . .

[HTML Displayed in the absence of Java]

</APPLET>

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 33

ALT The ALT tag is an optional attribute used to specify a short text message that

should be displayed if the browser understands the APPLET tag but can’t currently

run Java applets. This is distinct from the alternate HTML you provide for

browsers that don’t support applets.

WIDTH AND HEIGHT: WIDTH and HEIGHT are required attributes that give

the size (in pixels) of the applet display area.

ALIGN: ALIGN is an optional attribute that specifies the alignment of the applet.

This attribute is treated the same as the HTML IMG tag with these possible

values: LEFT, RIGHT, TOP, BOTTOM, MIDDLE, BASELINE, TEXTTOP,

ABSMIDDLE, and ABSBOTTOM.

VSPACE AND HSPACE: These attributes are optional. VSPACE specifies the

space, in pixels, above and below the applet. HSPACE specifies the space, in pixels,

on each side of the applet. They’re treated the same as the IMG tag’s VSPACE and

HSPACE attributes.

PARAM NAME AND VALUE: The PARAM tag allows you to specify appletspecific

arguments in an HTML page. Applets access their attributes with the

getParameter() method.

Passing parameters to Applets;

✓ Parameters are passed to applets in NAME=VALUE pairs in <PARAM> tags

between the opening and closing APPLET tags. Inside the applet, you read

the values passed through the PARAM tags with the getParameter() method

of the java.applet.Applet class.

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 34

import java.applet.*;

import java.awt.*;

public class DrawStringApplet extends Applet

{

private String defaultMessage = "Hello!";

public void paint(Graphics g)

{

String inputFromPage = this.getParameter("Message");

if (inputFromPage == null)

inputFromPage = defaultMessage;

g.drawString(inputFromPage, 50, 25);

}

}

<HTML>

<HEAD>

<TITLE> Draw String </TITLE>

</HEAD>

<BODY>

This is the applet:<P>

<APPLET code="DrawStringApplet" width="300" height="50">

<PARAM name="Message" value="welcome to java world!">

This page will be very boring if your

browser doesn't understand Java.

</APPLET>

</BODY>

</HTML>

The program below demonstrates this with a generic string drawing applet. The

applet parameter "Message" is the string to be drawn.

Example:

You also need an HTML file that references your applet. The following simple HTML

file will do:

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 35

OUTPUT

✓ You pass getParameter() a string that names the parameter you want. This

string should match the name of a PARAM element in the HTML page.

getParameter() returns the value of the parameter.

✓ All values are passed as strings. If you want to get another type like an

integer, then you'll need to pass it as a string and convert it to the type you

really want.

✓ The PARAM element is also straightforward. It occurs between <APPLET>

and </APPLET>. It has two attributes of its own, NAME and VALUE. NAME

identifies which PARAM this is. VALUE is the string value of the PARAM.

Both should be enclosed in double quote marks if they contain white space.

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 36

import java.awt.*;

import java.applet.*;

import java.net.*;

public class getbase extends Applet

{

public void paint(Graphics g)

{

String message;

 URL url=getCodeBase();

message="code-base:"+url.toString();

g.drawString(message,10,20);

url=getDocumentBase();

message="Document-base:"+url.toString();

g.drawString(message,10,30);

}

}

getDocumentbase() and getCodebase()

✓ We sometimes need to load media and Text with the help of Applets. We

have the facility to load the data from the directory which holds the HTML

file which started the applet and the directory from which the applet’s class

loaded. These directories are returned in the form of URL by

getDocumnetBase() and getCodeBase() methods.

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 37

OUTPUT

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 38

AppletContext and showDocument()

✓ AppletContext is an interface which helps us to get the required information

from the environment in which the applet is running and getting executed.

✓ This information is derived by getAppletContext() method which is defined

by Applet. Once we get the information with the above mentioned method,

we can easily bring another document into view by calling showDocument()

method. The basic functionality of this method is that it returns no value

and never throw any exception even if it fails hence needed to be

implemented with utmost care and caution.

There are two showDocument() methods.

1. The method showDocument(URL) displays the document at the specified URL.

2. The method showDocument(URL, where) displays the specified document at the

specified location within the browser window.

Event Handling and Applets

Hamsashree M K,Asst.Professor,Dept.of ECE BGSIT 39

import java.awt.*;

import java.applet.*;

import java.net.*;

public class contextdoc extends Applet

{

public void start()

{

AppletContext ac=getAppletContext();

URL url=getCodeBase();

try

{

ac.showDocument(new URL(url+"demo.html"));

}

catch(MalformedURLException e)

{

showStatus("URL not found");

}

}

}

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 1

Syllabus:

SERVLETS: Java Servlet and common Gateway Interface Programming, A

simple Java Servlet, Anatomy of a Java Servlet, Reading Data from a Client,

Reading HTTP Requests Headers,

sending Data to a Client and writing HTTP Response Headers, Working with

Cookies,

Tracking Session.

programs.

JAVA SERVER PAGES: JSP, JSP Tags. Tomcat, Request String, User

Sessions, Cookies, Session Objects.

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 2

 Servlet

• A servlet is a small Java program that runs within a Web server.

• Servlets receive and respond to requests from Web clients, usually

across HTTP, the Hyper Text Transfer Protocol.

• Servlet is an opposite of applet as a server-side applet.

• Applet is an application running on client while servlet is running on

server.

• Servlets are server side components that provide a powerful

mechanism for developing web applications.

• Using servlets we can create fast and efficient server side

applications and can run it on any servlet enabled web server.

• Servlet runs entirely inside the JVM (Java Virtual Machine).

• Since the servlet runs on server side so it does not depend on browser

compatibility.

Advantages of using Servlets

• Less response time because each request runs in a separate thread.

• Servlets are scalable.

• Servlets are robust and object oriented.

• Servlets are platform independent.

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 3

 Servlet Architecture:

• The following figure depicts a typical servlet life-cycle scenario.

• First the HTTP requests coming to the server are delegated to the

servlet container.

• The servlet container loads the servlet before invoking the service()

method.

• Then the servlet container handles multiple requests by spawning multiple

threads, each thread executing the service() method of a single instance of the

servlet.

• User sends request for a servlet by clicking a link that has URL to a servlet.

• The container finds the servlet using deployment descriptor and creates two

objects

 HttpServletRequest

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 4

 HttpServletResponse

• Then the container creates or allocates a thread for that request and calls the

Servlet's service() method and passes the request, response objects as

arguments.

• The service() method, then decides which servlet method, doGet() or doPost() to

call, based on HTTP Request Method(Get, Post etc) sent by the client. Suppose

the client sent an HTTP GET request, so the service() will call Servlet's doGet()

method.

• Then the Servlet uses response object to write the response back to the client.

• After the service() method is completed the thread dies. And the request and

response objects are ready for garbage collection.

Life cycle of servlet:

• The init() method

• The service() method

• The destroy() method

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 5

The init() method :

• The init method is designed to be called only once. It is called when the

servlet is first created, and not called again for each user request.

• So, it is used for one-time initializations, just as with the init method of

applets.

• The servlet is normally created when a user first invokes a URL

corresponding to the servlet, but you can also specify that the servlet be

loaded when the server is first started.

• When a user invokes a servlet, a single instance of each servlet gets

created, with each user request resulting in a new thread that is handed

off to doGet or doPost as appropriate.

• The init() method simply creates or loads some data that will be used

throughout the life of the servlet.

• The init method definition looks like this:

public void init() throws ServletException

{

 // Initialization code...

}

The service() method :

• The service() method is the main method to perform the actual task. The

servlet container (i.e. web server) calls the service() method to handle

requests coming from the client(browsers) and to write the formatted

response back to the client.

• Each time the server receives a request for a servlet, the server spawns

a new thread and calls service. The service() method checks the HTTP

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 6

request type (GET, POST, PUT, DELETE, etc.) and calls doGet, doPost,

doPut, doDelete, etc. methods as appropriate.

• Here is the signature of this method:

public void service(ServletRequest request, ServletResponse

response)

throws ServletException, IOException

{

}

• The service () method is called by the container and service method

invokes doGe, doPost, doPut, doDelete, etc. methods as appropriate. So

you have nothing to do with service() method but you override either

doGet() or doPost() depending on what type of request you receive from

the client.

• The doGet() and doPost() are most frequently used methods with in each

service request. Here is the signature of these two methods.

The destroy() method :

• The destroy() method is called only once at the end of the life cycle of a

servlet. This method gives your servlet a chance to close database

connections, halt background threads, write cookie lists or hit counts to

disk, and perform other such cleanup activities.

• After the destroy() method is called, the servlet object is marked for

garbage collection. The destroy method definition looks like this:

public void destroy()

 {

// Finalization code...

}

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 7

 Common Gateway Interface:

 It is a very well defined and supported standard.

 CGI scripts are generally written in either Perl, C, or maybe just

a simple shell script.

 CGI is a technology that interfaces with HTML.

 CGI is the best method to create a counter because it is

currently the quickest.

 CGI standard is generally the most compatible with today’s

browsers.

 The Common Gateway Interface (CGI) standard is a data-passing

specification used when a Web server must send or receive data

from an application such as a database.

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 8

 A CGI script passes the request from the Web server to a

database, gets the output and returns it to the Web client.

General structure of servlet/SKELEton of servlet:

imort javax.servlet.*;

class className extends GenericServlet

{

public void init() throws ServletException

 {

 // Initialization code...

}

 public void service(ServletRequest request, ServletResponse

response)throws ServletException, IOException

 {

 }

 public void destroy()

 {

 // Finalization code...

 }

 }

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 9

Simple Servlet program:

import java.io.*;

import javax.servlet.*;

public class A extends GenericServlet

{

public void service(ServletRequest req ,ServletResponse res)throws

ServletException,IOException

{

res.setContentType(“text/html”) ;

PrintWriter out=res.getWriter();

out.println(“<p> My First Servlet program </p> “);

}

}

Web deployment: (web.xml)

<servlet>

<servlet-name>CSA</servlet>

<servlet-class>A.class</sertlet-class>

</servlet>

<servlet-mapping>

<servlet-name>CSA</servlet>

<url-patter>*.dll</url-patter> </servlet-mapping>

Servlet API:

javax.servlet - The javax.servlet package contains a number of classes and

http://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/package-summary.html

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 10

interfaces that describe and define the contracts between a servlet class

and the runtime environment

provided for an instance of such a class by a conforming servlet container.

javax.servlet.http-The javax.servlet.http package contains a number of

classes and interfaces that describe and define the contracts between a

servlet class running under the HTTP protocol and the runtime environment

provided for an instance of such a class by a conforming servlet container

The javax.servlet Package

The javax.servlet package contains a number of interfaces and classes

that establish the framework in which servlets operate.

http://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/package-summary.html

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 11

 The javax.servlet.http Package

The javax.servlet.http package contains a number of interfaces classes that

are commonly used by servlet developers.

Following are the class :

class description

Cookie Allow state information to be stored on client

machine

HttpServlet Provide Methods to handle Http Request and

response

HttpSessionEvent Encapsulate a session changed event

HttpSessionBindingEvent Indicate when a listener is bounded to or unbounded

from session value

Reading Servlet Parameters

• The ServletRequest class includes methods that allow you to read the

names and values of parameters that are included in a client request.

• The example contains two files. A Web page is defined in

PostParameters.htm and a servlet is defined in PostParametersServlet.java.

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 12

• Different mathods to read parameter are as follows:

• getParameter(string)

• getParamaterNames();

• getParamaterValues();

getParameter()-returns a value of parameter in the string form

getParameterNames()-returns an enumeration of the parameter names.These

are processed in loop

Program: To display greeting message on the browser Hello UserName How

Are You accept username from the client.

import java.io.*;

import javax.servlet.ServletException;

import javax.servlet.http*;

public class A extends GenericServlet

{

public void service(ServletRequest req ,ServletResponse res)throws

ServletException,IOException

{

res.setContentType(“text/html”) ;

PrintWriter out=res.getWriter();

String msg=req.getParameter("t1");

out.println(“hello”+msg+”how are you”);

}

}

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 13

 HTML code

<html>

<body>

<form action=http://localhost:8080/A >

<input type=”text box” name=”t1” value=” “>

<input type=”submit” name=”submit”>

</form>

</body>

</html>

using getParameterName() method:

import java.io.*;

import javax.servlet.ServletException;

import javax.servlet.http*;

public class A extends GenericServlet

{

public void service(ServletRequest req ,ServletResponse res)throws

ServletException,IOException

{

res.setContentType(“text/html”) ;

PrintWriter out=res.getWriter();

Enumeration e=req.getParameterNames();

while(e.hasMoreElements())

http://localhost:8080/A

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 14

{

Sting a=e.nextElement();

String msg=request.getParameter(a);

out.println(msg);

}

}

<html>

<body>

<form action=http://localhost:8080/A>

<input type=”text box” name=”t1” value=” “>

<input type=”text box” name=”t2” value=” “>

<input type=”submit” name=”submit”>

</form>

</body>

</html>

Handling Http request and Http response:

• The HttpServlet class provide a specialized methods that handle the

various types of HTTP request.

• The different methods are:

doGet(),doPost(),doOperation(),doPut(),doTrace(),doDelete()

HTTP doGet() method:

• The doGet() method is the method inside a servlet that gets called

every time a request from a html or jsp page is submitted.

• The control first reaches the doGet() method of the servlet and then

the servlet decides what functionality to invoke based on the submit

http://localhost:8080/A

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 15

request. The get method called when the type of page submission is

"GET".

• doGet is used when there is are requirement of sending data appended to

a query string in the URL.

• The doGet models the GET method of Http and it is used to retrieve

the info on the client from some server as a request to it.

• The doGet cannot be used to send too much info appended as a query

stream. GET puts the form values into the URL string.

• GET is limited to about 256 characters (usually a browser limitation) and

creates really ugly URLs.

Program:

import java.io.*;

import javax.servlet.ServletException;

import javax.servlet.http*;

public class A extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse

response)throws

ServletException,IOException

{

res.setContentType(“text/html”) ;

PrintWriter out=res.getWriter();

String msg=req.getParameter("t1");

out.println(“hello”+msg+”how are you”);

}

}

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 16

<html>

<body>

<form action=http://localhost:8080/A method=GET >

<input type=”text box” name=”t1” value=” “>

<input type=”submit” name=”submit”>

</form>

</body>

</html>

HTTP doPost() method:

• The doPost() method is the method inside a servlet that gets called every

time a requests from a HTML or jsp page calls the servlet using "POST"

method.

• doPost allows you to have extremely dense forms and pass that to the

server without clutter or limitation in size. e.g. you obviously can't send a

file from the client to the server via doGet.

• doPost has no limit on the amount of data you can send and because the

data does not show up on the URL you can send passwords.

• But this does not mean that POST is truly secure. It is more secure in

comparison to doGet method.

Program:

import java.io.*;

import javax.servlet.ServletException;

import javax.servlet.http*;

public class A extends HttpServlet {

http://localhost:8080/A

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 17

public void doPost(HttpServletRequest request, HttpServletResponse

response)throws

ServletException,IOException

{

res.setContentType(“text/html”) ;

PrintWriter out=res.getWriter();

String msg=req.getParameter("t1");

out.println(“hello”+msg+”how are you”);

}

}

<html>

<body>

<form action=http://localhost:8080/A method=POST>

<input type=”text box” name=”t1” value=” “>

<input type=”submit” name=”submit”>

</form>

</body>

</html>

Difference between HTTP doGet and HTTP doPost methods of Servlet

Difference Type GET (doGet()) POST (doPost())

HTTP Request The request contains

only the request line and

HTTP header.

Along with request line and

header it also contains HTTP

body.
URL Pattern Query string or form

data is simply appended

to the URL as name-value

pairs.

Form name-value pairs are

sent in the body of the

request, not in the URL itself.

http://localhost:8080/A

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 18

Parameter passing The form elements are

passed to the server by

appending at the end of

the URL.

The form elements are

passed in the body of the

HTTP request.
Size The parameter data is

limited (the limit

depends on the

container normally 4kb)

Can send huge amount of

data to the server.

Idempotency GET is Idempotent(can be

applied multiple times without

changing the values

valuesresult)

POST is not idempotent(warns

if applied multiple times without

changing the values

result)

Usage Generally used to

fetch some

information from the

host.

Generally used to process the

sent data.

Security Not Safe - A person standing

over your shoulder can view

your userid/pwd if submitted

via Get (Users can see data in

address bar.)

Safe - No one will be able to

view what data is getting

submitted (Data hidden from

users.)

Data Format Supports ASCII.

Supports ASCII + Binary.

Using Cookies

• A cookie is a small piece of information that is persisted between

the multiple client requests.

• A cookie has a name, a single value, and optional attributes such as a

comment, path and domain qualifiers, a maximum age, and a version

number.

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 19

• Different methods in cookie class are:

1. String getName()- Returns a name of cookie

2. String getValue()-Returns a value of cookie

3 .int getMaxAge()-Returns a maximum age of cookie in millisecond

4. String getDomain()-Returns a domain

5. boolean getSecure()-Returns true if cookie is secure otherwise false

6. String getPath()-Returns a path of cookie

7.void setPath(Sting)- set the path of cookie

8.void setDomain(String)-set the domain of cookie

9.void setMaxAge(int)-set the maximum age of cookie

10.void setSecure(Boolean)-set the secure of cookie.

Creating cookie:

• Cookie are created using cookie class constructor.

• Content of cookies are added the browser using addCookies() method.

Reading cookies:

• Reading the cookie information from the browser using getCookies()

method.

• Find the length of cookie class.

• Retrive the information using different method belongs the cookie class.

Program: To create and read the cookie for the given cookie name as

“EMPID” and its value as”AN2356”.(vtu program)

public class A extends GenericServlet

{

public void service(ServletRequest req ,ServletResponse res)throws

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 20

ServletException,IOException

{

res.setContentType(“text/html”) ;

PrintWriter out=res.getWriter();

/* creating cookie object */

 Cookie c=new Cookie(“EMPID”,”AN2356”);

res.addCookie(c);//adding cookie in the response

/*reading cookies */

Cookie c[]=req.getCookies();

for(int i=0;i<c.length;i++)

{

String Name=c[i].getName();

String value= c[i].getValue();

out.println(“name=”+Name);

out.println(“Value=”+Value);

}

 } }

 Session Tracking

• Session tracking is the capability of a server to maintain the current

state of a single client’s sequential requests.

• Session simply means a particular interval of time.

• Session Tracking is a way to maintain state of a user.

• The HTTP protocol used by Web servers is stateless.

• Each time user requests to the server, server treats the request as the new

request.

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 21

• So we need to maintain the state of a user to recognize to particular user.

• This type of stateless transaction is not a problem unless you need to know

the sequence of actions a client has performed while at your site.

• Different methods of HttpSession interface are as follows:

1.object getAttribute(String)-Returns the value associated with the name

passed as argument.

2.long getCreationTime()-Returns the time when session created.

3.String getID()-Returns the session ID

4.long getAccessedTIme()-returns the time when client last made a request

for this session.

5.void setAttribute(String,object)-Associates the values passed in the object

name passed.

Program:

import javax.servelt.*;

import java.io.*;

public class A extends GenericServlet

{

public void service(ServletRequest req ,ServletResponse res)throws

ServletException,IOException

{

res.setContentType(“text/html”) ;

PrintWriter out=res.getWriter();

HttpSession h=req.getSesssion(true);

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 22

Date d=(Date) h.getAttribute(“Date”);

out.println(“last date and time”+d);

Date d1=new Date();

d1=h.setAttribute(“date”,d1);

out.println(“current date and time=”+d1);

}

}

Servelt Interface:

methods description

void destroy()

Called by the servlet container to indicate to a

servlet that the servlet is being taken out of

service.

void init(ServletConfig config)

Called by the servlet container to indicate to a

servlet that the servlet is being placed into

service.

void service(ServletRequest

req, ServletResponse res)

Called by the servlet container to allow the
servlet to respond to a request.

getServletInfo() Returns information about the servlet, such as

author, version, and copyright.

ServletConfig

getServletConfig()

Returns a ServletConfig object, which contains

initialization and startup parameters for this

servlet

http://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/Servlet.html#destroy%28%29
http://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/Servlet.html#init%28javax.servlet.ServletConfig%29
http://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletConfig.html
http://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/Servlet.html#service%28javax.servlet.ServletRequest,%20javax.servlet.ServletResponse%29
http://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletRequest.html
http://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletRequest.html
http://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletResponse.html
http://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/Servlet.html#getServletInfo%28%29
http://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletConfig.html
http://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletConfig.html
http://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletConfig.html

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 23

The GenericServlet Class

 The GenericServlet class provides implementations of the basic life cycle

methods for a servlet.

 GenericServlet implements the Servlet and ServletConfig interfaces.

 In addition, a method to append a string to the server log file is available.The

signatures of this method are shown here:

void log(String s)

void log(String s, Throwable e)

 Here, s is the string to be appended to the log, and e is an exception that

occurred

13.using Tomcat for servlet Development:

certain steps taken to setup the tomcat

1.The examples here is Windows environment. The default location for Tomcat

5.5.17 is

C:\Program Files\Apache Software Foundation\Tomcat 5.5\

2.to set the environmental variable JAVA_HOME to the top-level directory in

which

the Java Software Development Kit is installed.

3.To start Tomcat, select Start Tomcat in the Start | Programs menu, , and the n

press Start in the Tomcat Properties dialog. The directory

C:\Program Files\Apache Software Foundation\Tomcat 5.5\common\lib\

 Contain servlet.api.jar.

4.. To make this file accessible, update your CLASSPATH environment

variable so that it includes

C:\Program Files\Apache Software

Foundation\Tomcat5.5\common\lib\servlet.api.jar

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 24

5.First. Copy the servlet’s class file into the following directory:

C:\Program Files\Apache Software

Foundation\Tomcat5.5\webapps\servlets.examples\WEB-INF\classes

6.Next, add the servlet’s name and mapping to the web.xml file in the following

directory

C:\Program Files\Apache Software Foundation\Tomcat

5.5\webapps\servlets.examples\WEB-INF

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 25

JSP

 Java based technology that simplifies the developing of dynamic web sites.

• JSP pages are HTML pages with embedded code that allows to access

data from Java code running on the server.

• JSP provides separation of HTML presentation logic from the application

logic.

• JSP technology provides a way to combine the worlds of HTML

and Java servlet programming.

• JSP specs are built on the Java Servlet API.

• JSP supports two different styles for adding dynamic content to web

pages:

• JSP pages can embed actual programming code (typically Java).

• JSP supports a set of HTML-like tags that interact with Java objects

on the server (without the need for raw Java code to appear in the page).

Advantages of JSP

• JSP are translated and compiled into JAVA servlets but are easier to

develop than JAVA servlets.

• JSP uses simplified scripting language based syntax for embedding HTML

into JSP.

• JSP containers provide easy way for accessing standard objects and

actions.

• JSP reaps all the benefits provided by JAVA servlets and web

container environment, but they have an added advantage of being

simpler and more natural program for we b enabling enterprise developer.

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 26

• JSP use HTTP as default request / response communication paradigm

and thus make JSP ideal as Web Enabling Technology.

JSP Life cycle:

Initialization:

• When a container loads a JSP it invokes the jspInit() method before

servicing any requests. If you need to perform JSP-specific initialization,

override the jspInit() method:

public void jspInit()

{

// Initialization code...

}

• Typically initialization is performed only once and as with the servlet init

method, you generally initialize database connections, open files, and

create lookup tables in the jspInit method.

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 27

JSP service:

• This phase of the JSP life cycle represents all interactions with requests

until the JSP is destroyed.

• Whenever a browser requests a JSP and the page has been loaded and

initialized, the JSP engine invokes the _jspService() method in the JSP.

• The _jspService() method takes an HttpServletRequest and an

HttpServletResponse as its parameters as follows:

void _jspService(HttpServletRequest request, HttpServletResponse

response)

{

// Service handling code...

}

• The _jspService() method of a JSP is invoked once per a request and is

responsible for generating the response for that request and this

method is also responsible for generating responses to all seven of the

HTTP methods ie. GET, POST, DELETE etc.

JSP destroy:

• The destruction phase of the JSP life cycle represents when a JSP is

being removed from use by a container.

• The jspDestroy() method is the JSP equivalent of the destroy method

for servlets. Override jspDestroy when you need to perform any cleanup,

such as releasing database connections or closing open files.

• The jspDestroy() method has the following form:

public void jspDestroy()

{

// Your cleanup code goes here. }

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 28

JSP Architecture:

The following steps explain how the web server creates the web page using JSP:

• As with a normal page, your browser sends an HTTP request to the web

server.

• The web server recognizes that the HTTP request is for a JSP page and

forwards it to a JSP engine. This is done by using the URL or JSP page

which ends with .jsp instead of .html.

• The JSP engine loads the JSP page from disk and converts it into a

servlet content. This conversion is very simple in which all template text

is converted to println() statements and all JSP elements are converted

to Java code that implements the corresponding dynamic behavior of the

page.

• The JSP engine compiles the servlet into an executable class and

forwards the original request to a servlet engine.

• A part of the web server called the servlet engine loads the Servlet class

and executes it. During execution, the servlet produces an output in

HTML format, which the servlet engine passes to the web server inside

an HTTP response.

• The web server forwards the HTTP response to your browser in terms of

static HTML content.

• Finally web browser handles the dynamically generated HTML page inside

the HTTP response exactly as if it were a static page

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 29

JSP Tags(VTU question VIMP):

JSP tags define java code that is to be executed before the

output of a JSP program is sent to the browser. There are five

types of JSP tags:

• Comment Tag

• Declaration statement Tag

• Directive Tag

• Expression Tag

• Scriptlet Tag

Directive Tag:

A Directive tag opens with <%@ and closes with %>. There are three commonly

used directives.Used to import java packages into JSP program

Example:

<%@ page import = “java.sql.*” %>

Comment Tag:

A comment tag opens with <%-- and closes with --%>, and is followed by a

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 30

comment that usually describes the functionality of statements that follow the

comment tag.

Example:

<%-- jsp comment tag --%>

Declaration Statement Tag:

A Declaration statement tag opens with <%! and is followed by a Java

declaration statements that define variables, objects, and methods.

Example:

<%!

int a=10;

disp() { }

%>

Expression Tag:

• A JSP expression element contains a scripting language expression

that is evaluated, converted to a String, and inserted where the

expression appears in the JSP file.

• Because the value of an expression is converted to a String, you can use an

expression within a line of text, whether or not it is tagged with HTML,

in a JSP file.

• The expression element can contain any expression that is valid

according to the Java anguage Specification but you cannot use a

semicolon to end an expression.

 Syntax two forms:

<%= expr %>

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 31

example:

<%! int a = 5, b = 10;

<%= a+b %>

%>

Scriptlet Tag:

A scriptlet tag opens with <% and contains commonly used java control

statements and loops. It closes with %>

Syntax two forms:

<% control statements %>

Example:

<% for (int i = 0; i < 2; i++) { %>

<p>Hello World!</p>

<% } %>

Program to display the grading system for the given java subject marks using

control statements (VTU question VIMP):

<% !

int marks=65;

<% if(marks>=90)%>

<p>grade A</p>

<%else if(marks>=80 && marks<=89)%>

<p>Grade B</p>

<%else if(marks>=70 && marks<=79)%>

<p>Grade C</p>

<%else%>

<p>Fail</p>

%>

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 32

Request String:

• The browser generates a user request string whenever the submit

button is selected.

• The HttpServletRequest parameter Request object has a request scope

that is used to access the HTTP request data, and also provides a

context to associate the request-specific data.

• Request object implements javax.servlet.ServletRequest interface.

• Jsp provides the two ways of request string:

getParameter(String)

getParameterNames()

Using request.getParameter()

getParameter() method requires an argument, which is the name of the

field whose value you want to retrieve.

Program: Department has set the grade for java subject,accept the input

from the user and display the grading on the browser. (VTU question VIMP)

above 90-grade A

80-89 grade B

70-79 grade C

below 70 Fail using jsp

A.html

<html>

<body>

<form action=A.jsp>

<input type=”textbox” name=”t1” value=” “>

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 33

<input type=”submit” mane=”submit”>

</form>

</body>

</html>

A.jsp

<%!

String t = request.getParameter(“t1”);

int Marks=Integer.parseInt(t);

<% if(marks>=90)%>

<p>grade A</p>

<%else if(marks>=80 && marks<=89)%>

<p>Grade B</p>

<%else if(marks>=70 && marks<=79)%>

<p>Grade C</p>

<%else%>

<p>Fail</p>

 %>

using getParameterNames():

getParameterNames()-returns an enumeration of the parameter names.These

are processed in loop

program:

<%@ import java.util.*; %>

<%!

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 34

Enumeration e=req.getParameterNames();

while(e.hasMoreElements())

{

Sting a=e.nextElement();

String msg=request.getParameter(a);

out.println(msg);

}

%>

A.html

<html>

<body>

<form action=A.jsp>

<input type=”textbox” name=”t1” value=” “>

<input type=”textbox” name=”t2” value=” “>

<input type=”submit” mane=”submit”>

</form>

</body>

</html>

Cookies:

• A cookie is a small piece of information created by a JSP program that

is stored in the client’s hard disk by the browser. Cookies are used to

store various kind of information such as username, password, and user

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 35

preferences, etc.

• Different methods in cookie class are:

1.String getName()- Returns a name of cookie

2.String getValue()-Returns a value of cookie

3.int getMaxAge()-Returns a maximum age of cookie in millisecond

4. String getDomain()-Returns a domain

5.boolean getSecure()-Returns true if cookie is secure otherwise

false

6.String getPath()-Returns a path of cookie

7.void setPath(Sting)- set the path of cookie

8.void setDomain(String)-set the domain of cookie

9.void setMaxAge(int)-set the maximum age of cookie

10.void setSecure(Boolean)-set the secure of cookie.

Creating cookie:

Cookie are created using cookie class constructor.

Content of cookies are added the browser using addCookies() method.

Reading cookies:

Reading the cookie information from the browser using getCookies() method.

Find the length of cookie class.

Retrive the information using different method belongs the cookie class

PROGRAM: To create and read the cookie for the given cookie name as

“EMPID” and its value as”AN2356”.(VTU question VIMP)

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 36

JSP program to create a cookie

<%!

Cookie c=new Cookie(“EMPID”,”AN2356”);

response.addCookie(c);

%>

JSP program to read a cookie

<%!

Cookie c[]=request.getCookies();

for(i=0;i<c.length;i++)

{

String name=c[i].getName();

String value=c[i].getValue();

out.println(“name=”+name);

out.println(“value=”+value);

}

%>

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 37

Session object(session tracking or session uses)

• The HttpSession object associated to the request

• Session object has a session scope that is an instance of

javax.servlet.http.HttpSession class. Perhaps it is the most commonly

used object to manage the state contexts.

• This object persist information across multiple user connection.

• Created automatically by

• Different methods of HttpSession interface are as follows:

1.object getAttribute(String)-Returns the value associated with

the name passed as argument.

2.long getCreationTime()-Returns the time when session created.

3.String getID()-Returns the session ID

4.long getAccessedTIme()-returns the time when client last made

a request for this session.

5.void setAttribute(String,object)-Associates the values passed

in the object name passed.

Program:

<%!

HttpSession h=req.getSesssion(true);

Date d=(Date) h.getAttribute(“Date”);

out.println(“last date and time”+d);

Date d1=new Date();

Servlets And JSP

Hamsashree M K,Asst.Professor,Dept.of ECE,BGSIT Page 38

d1=h.setAttribute(“date”,d1);

out.println(“current date and time=”+d1);

%>

